DagSemProc.04351.8.pdf
- Filesize: 124 kB
- 4 pages
A well-known topological theorem due to Kat\v etov states: Suppose $(X,\tau)$ is a normal topological space, and let $f:X\to[0,1]$ be upper semicontinuous, $g:X\to[0,1]$ be lower semicontinuous, and $f\leq g$. Then there is a continuous $h:X\to[0,1]$ such that $f\leq h\leq g$. We show a version of this theorem for many posets with auxiliary relations. In particular, if $P$ is a Scott domain and $f,g:P\to[0,1]$ are such that $f\leq g$, and $f$ is lower continuous and $g$ Scott continuous, then for some $h$, $f\leq h\leq g$ and $h$ is both Scott and lower continuous. As a result, each Scott continuous function from $P$ to $[0,1]$, is the sup of the functions below it which are both Scott and lower continuous.
Feedback for Dagstuhl Publishing