License
when quoting this document, please refer to the following
URN: urn:nbn:de:0030-drops-2115
URL: http://drops.dagstuhl.de/opus/volltexte/2005/211/

Norkin, Vladimir ; Onischenko, Boris.

Minorant methods for stochastic global optimization

pdf-format:
Dokument 1.pdf (227 KB) Dokument 2.pdf (369 KB)
pdf gepackt:
Dokument1.zip (1,115 KB)


Abstract

We develop numerical methods for solution of stochastic global optimization problems: min$[F(x)=Ef(x,¦Ø)| xin X]$ and $min[F(x)=P{f(x, ¦Ø) ¡Ü0} | xin X]$, where x is a finite dimensional decision vector with possible values in the set X, ¦Ø is a random variable, $f(x,¦Ø)$ is a nonlinear function of variable x, E and P denote mathematical expectation and probability signs respectively. These methods are based on the concept of stochastic tangent minorant, which is a random function $¦Õ(x,y, ¦Ø)$ of two variables x and y with expected value $¦µ(x,y)=E ¦Õ(x,y, ¦Ø)$ satisfying conditions: (i) $¦µ(x,x)=F(x)$, (ii) $¦µ(x,y) ¡ÜF(x)$ for all x,y. Tangent minorant is a source of information on a function global behavior. We develop a calculus of (stochastic) tangent minorants. We develop a stochastic analogue of Pijavski¡¯s global optimization method and a branch and bound method with stochastic minorant bounds. Applications to optimal facility location and network reliability optimization are discussed.

BibTeX - Entry

@InProceedings{norkin_et_al:DSP:2005:211,
  author =	{Vladimir Norkin and Boris. Onischenko},
  title =	{Minorant methods for stochastic global optimization},
  booktitle =	{Algorithms for Optimization with Incomplete Information},
  year =	{2005},
  editor =	{Susanne Albers and Rolf H. M{\"o}hring and Georg Ch. Pflug and R{\"u}diger Schultz},
  number =	{05031},
  series =	{Dagstuhl Seminar Proceedings},
  ISSN =	{1862-4405},
  publisher =	{Internationales Begegnungs- und Forschungszentrum f{\"u}r Informatik (IBFI), Schloss Dagstuhl, Germany},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2005/211},
  annote =	{Keywords: Stochastic global optimization, stochastic tangent minorant, branch and bound method}
}

Keywords: Stochastic global optimization, stochastic tangent minorant, branch and bound method
Seminar: 05031 - Algorithms for Optimization with Incomplete Information
Issue date: 2005
Date of publication: 14.07.2005


DROPS-Home | Fulltext Search | Imprint Published by LZI