DagSemProc.06021.11.pdf
- Filesize: 202 kB
- 10 pages
We searched for the worst cases for correct rounding of the exponential function in the IEEE 754r decimal64 format, and computed all the bad cases whose distance from a breakpoint (for all rounding modes) is less than $10^{-15}$,ulp, and we give the worst ones. In particular, the worst case for $|x| geq 3 imes 10^{-11}$ is $exp(9.407822313572878 imes 10^{-2}) = 1.098645682066338,5,0000000000000000,278ldots$. This work can be extended to other elementary functions in the decimal64 format and allows the design of reasonably fast routines that will evaluate these functions with correct rounding, at least in some domains.
Feedback for Dagstuhl Publishing