Towards a Final Analysis of Pairing Heaps

Author Seth Pettie



PDF
Thumbnail PDF

File

DagSemProc.06091.5.pdf
  • Filesize: 200 kB
  • 10 pages

Document Identifiers

Author Details

Seth Pettie

Cite As Get BibTex

Seth Pettie. Towards a Final Analysis of Pairing Heaps. In Data Structures. Dagstuhl Seminar Proceedings, Volume 6091, pp. 1-10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006) https://doi.org/10.4230/DagSemProc.06091.5

Abstract

Fredman, Sedgewick, Sleator, and Tarjan proposed the 
{em pairing heap} 
as a self-adjusting, streamlined version of the Fibonacci heap.
It provably supports all priority queue operations in logarithmic
time and is known to be extremely efficient in practice.
However, despite its simplicity and empirical superiority, 
the pairing heap is one of the few popular data structures 
whose basic complexity remains open.
In this paper we prove that pairing heaps support the 
deletemin operation in optimal logarithmic time and all other operations
(insert, meld, and decreasekey) in time 
$O(2^{2sqrt{loglog n}})$.  This result gives 
the {em first} sub-logarithmic time bound for decreasekey 
and comes close to the 
lower bound of $Omega(loglog n)$ established by Fredman.

Pairing heaps have a well known but poorly understood relationship to
splay trees and, to date, the transfer of ideas has flowed in one direction:
from splaying to pairing.   One contribution of this paper is a
new analysis that reasons explicitly with information-theoretic
measures.  Whether these ideas could contribute to the analysis
of splay trees is an open question.

Subject Classification

Keywords
  • Data structure
  • heap
  • self-adjusting
  • amortized analysis

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail