Computation of the Minimal Associated Primes

Author Santiago Laplagne



PDF
Thumbnail PDF

File

DagSemProc.06271.6.pdf
  • Filesize: 170 kB
  • 6 pages

Document Identifiers

Author Details

Santiago Laplagne

Cite AsGet BibTex

Santiago Laplagne. Computation of the Minimal Associated Primes. In Challenges in Symbolic Computation Software. Dagstuhl Seminar Proceedings, Volume 6271, pp. 1-6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)
https://doi.org/10.4230/DagSemProc.06271.6

Abstract

Solving systems of polynomial equations is a main task in Computer Algebra, although the precise meaning of what is an acceptable solution depends on the context. In this talk, we interpret it as finding the minimal associated primes of the ideal generated by the polynomials. Geometrically, this is equivalent to decompose the set of solutions into its irreducible components. We study the existing algorithms, and propose some modifications. A common technique used is to reduce the problem to the zero dimensional case. In a paper by Gianni, Trager and Zacharias they use this technique, combined with the splitting tool $I = (I : h^infty) cap langle I, h^m angle$ for some specific polynomial $h$ and integer $m$. This splitting introduces a number of redundant components that are not part of the original ideal. In the algorithm we present here, we use the reduction to the zero dimensional case, but we avoid working with the ideal $langle I, h^m angle$. As a result, when the ideal has components of different dimensions, our algorithm is usually more efficient.
Keywords
  • Minimal associated primes
  • groebner basis
  • polynomail equations
  • radical

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail