DagSemProc.06201.4.pdf
- Filesize: 89 kB
- 4 pages
We investigate non--binary error correcting codes with noiseless feedback, localized errors, or both. It turns out that the Hamming bound is a central concept. For block codes with feedback we present here a coding scheme based on an idea of erasions, which we call the {\bf rubber method}. It gives an optimal rate for big error correcting fraction $\tau$ ($>{1\over q}$) and infinitely many points on the Hamming bound for small $\tau$. We also consider variable length codes with all lengths bounded from above by $n$ and the end of a word carries the symbol $\Box$ and is thus recognizable by the decoder. For both, the $\Box$-model with feedback and the $\Box$-model with localized errors, the Hamming bound is the exact capacity curve for $\tau <1/2.$ Somewhat surprisingly, whereas with feedback the capacity curve coincides with the Hamming bound also for $1/2\leq \tau \leq 1$, in this range for localized errors the capacity curve equals 0. Also we give constructions for the models with both, feedback and localized errors.
Feedback for Dagstuhl Publishing