Efficient Minimization of DFAs with Partial Transition

Authors Antti Valmari, Petri Lehtinen



PDF
Thumbnail PDF

File

LIPIcs.STACS.2008.1328.pdf
  • Filesize: 171 kB
  • 12 pages

Document Identifiers

Author Details

Antti Valmari
Petri Lehtinen

Cite As Get BibTex

Antti Valmari and Petri Lehtinen. Efficient Minimization of DFAs with Partial Transition. In 25th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 1, pp. 645-656, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008) https://doi.org/10.4230/LIPIcs.STACS.2008.1328

Abstract

Let PT-DFA mean a deterministic finite automaton whose transition
   relation is a partial function.  We present an algorithm for
   minimizing a PT-DFA in $O(m lg n)$ time and $O(m+n+alpha)$
   memory, where $n$ is the number of states, $m$ is the number of
   defined transitions, and $alpha$ is the size of the alphabet.
   Time consumption does not depend on $alpha$, because the $alpha$
   term arises from an array that is accessed at random and never
   initialized.  It is not needed, if transitions are in a suitable
   order in the input.  The algorithm uses two instances of an
   array-based data structure for maintaining a refinable partition.
   Its operations are all amortized constant time.  One instance
   represents the classical blocks and the other a partition of
   transitions.  Our measurements demonstrate the speed advantage of
   our algorithm on PT-DFAs over an $O(alpha n lg n)$ time,
   $O(alpha n)$ memory algorithm.

Subject Classification

Keywords
  • Deterministic finite automaton
  • sparse adjacency matrix
  • partition refinement

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail