Trimming of Graphs, with Application to Point Labeling

Authors Thomas Erlebach, Torben Hagerup, Klaus Jansen, Moritz Minzlaff, Alexander Wolff



PDF
Thumbnail PDF

File

LIPIcs.STACS.2008.1350.pdf
  • Filesize: 187 kB
  • 12 pages

Document Identifiers

Author Details

Thomas Erlebach
Torben Hagerup
Klaus Jansen
Moritz Minzlaff
Alexander Wolff

Cite AsGet BibTex

Thomas Erlebach, Torben Hagerup, Klaus Jansen, Moritz Minzlaff, and Alexander Wolff. Trimming of Graphs, with Application to Point Labeling. In 25th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 1, pp. 265-276, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)
https://doi.org/10.4230/LIPIcs.STACS.2008.1350

Abstract

For $t,g>0$, a vertex-weighted graph of total weight $W$ is $(t,g)$-trimmable if it contains a vertex-induced subgraph of total weight at least $(1-1/t)W$ and with no simple path of more than $g$ edges. A family of graphs is trimmable if for each constant $t>0$, there is a constant $g=g(t)$ such that every vertex-weighted graph in the family is $(t,g)$-trimmable. We show that every family of graphs of bounded domino treewidth is trimmable. This implies that every family of graphs of bounded degree is trimmable if the graphs in the family have bounded treewidth or are planar. Based on this result, we derive a polynomial-time approximation scheme for the problem of labeling weighted points with nonoverlapping sliding labels of unit height and given lengths so as to maximize the total weight of the labeled points. This settles one of the last major open questions in the theory of map labeling.
Keywords
  • Trimming weighted graphs
  • domino treewidth
  • planar graphs
  • point-feature label placement
  • map labeling
  • polynomial-time approximation schemes

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail