DagSemProc.07461.7.pdf
- Filesize: 339 kB
- 28 pages
The problem of reducing an algebraic Riccati equation $XCX-AX-XD+B=0$ to a unilateral quadratic matrix equation (UQME) of the kind $PX^2+QX+R$ is analyzed. New reductions are introduced which enable one to prove some theoretical and computational properties. In particular we show that the structure preserving doubling algorithm of B.D.O. Anderson [Internat. J. Control, 1978] is nothing else but the cyclic reduction algorithm applied to a suitable UQME. A new algorithm obtained by complementing our reductions with the shrink-and-shift tech- nique of Ramaswami is presented. Finally, faster algorithms which require some non-singularity conditions, are designed. The non-singularity re- striction is relaxed by introducing a suitable similarity transformation of the Hamiltonian.
Feedback for Dagstuhl Publishing