Application of verification techniques to inverse monoids

Author Markus Lohrey



PDF
Thumbnail PDF

File

DagSemProc.07441.3.pdf
  • Filesize: 149 kB
  • 15 pages

Document Identifiers

Author Details

Markus Lohrey

Cite AsGet BibTex

Markus Lohrey. Application of verification techniques to inverse monoids. In Algorithmic-Logical Theory of Infinite Structures. Dagstuhl Seminar Proceedings, Volume 7441, pp. 1-15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)
https://doi.org/10.4230/DagSemProc.07441.3

Abstract

The word problem for inverse monoids generated by a set $Gamma$ subject to relations of the form $e=f$, where $e$ and $f$ are both idempotents in the free inverse monoid generated by $Gamma$, is investigated. It is shown that for every fixed monoid of this form the word problem can be solved in polynomial time which solves an open problem of Margolis and Meakin. For the uniform word problem, where the presentation is part of the input, EXPTIME-completeness is shown. For the Cayley-graphs of these monoids, it is shown that the first-order theory with regular path predicates is decidable. Regular path predicates allow to state that there is a path from a node $x$ to a node $y$ that is labeled with a word from some regular language. As a corollary, the decidability of the generalized word problem is deduced. Finally, some results on free partially commutative inverse monoids are presented.
Keywords
  • Inverse monoids
  • word problems
  • Cayley-graphs
  • complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail