Sources of Superlinearity in Davenport-Schinzel Sequences

Author Seth Pettie



PDF
Thumbnail PDF

File

DagSemProc.08081.4.pdf
  • Filesize: 497 kB
  • 14 pages

Document Identifiers

Author Details

Seth Pettie

Cite As Get BibTex

Seth Pettie. Sources of Superlinearity in Davenport-Schinzel Sequences. In Data Structures. Dagstuhl Seminar Proceedings, Volume 8081, pp. 1-14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008) https://doi.org/10.4230/DagSemProc.08081.4

Abstract

A {em generalized} Davenport-Schinzel sequence is one over a finite alphabet
that contains no subsequences isomorphic to a fixed {em forbidden subsequence}.
One of the fundamental problems in this area is bounding (asymptotically) 
the maximum length of such sequences.
Following Klazar, let $Ex(sigma,n)$ be the maximum length of a sequence over an alphabet
of size $n$ avoiding subsequences isomorphic to $sigma$.
It has been proved that for every $sigma$,
$Ex(sigma,n)$ is either linear or very close to linear; in particular it is 
$O(n2^{alpha(n)^{O(1)}})$, where $alpha$ is the inverse-Ackermann function and $O(1)$
depends on $sigma$.  However, very little is known about the properties
of $sigma$ that induce superlinearity of $Ex(sigma,n)$.

In this paper we exhibit an infinite family of independent superlinear forbidden subsequences.
To be specific, we show that there are 17 {em prototypical} superlinear forbidden 
subsequences, some of which can be made arbitrarily long 
through a simple padding operation.
Perhaps the most novel part of our constructions is a new succinct code for
representing superlinear forbidden subsequences.

Subject Classification

Keywords
  • Davenport-Schinzel Sequences
  • lower envelopes
  • splay trees

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail