Optimization of Stochastic Discrete Event Simulation Models

Author Peter Buchholz



PDF
Thumbnail PDF

File

DagSemProc.09261.23.pdf
  • Filesize: 141 kB
  • 6 pages

Document Identifiers

Author Details

Peter Buchholz

Cite As Get BibTex

Peter Buchholz. Optimization of Stochastic Discrete Event Simulation Models. In Models and Algorithms for Optimization in Logistics. Dagstuhl Seminar Proceedings, Volume 9261, pp. 1-6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009) https://doi.org/10.4230/DagSemProc.09261.23

Abstract

Many systems in logistics can be adequately modeled using stochastic discrete
event simulation models. Often these models are used to find a good or optimal
configuration of the system. This implies that optimization algorithms have to
be coupled with the models. Optimization of stochastic
simulation models is a challenging research topic since the approaches should
be efficient, reliable and should provide some guarantee to find at least in
the limiting case with a runtime going to infinite the optimal solution with a
probability converging to 1.
The talk gives an overview on the state of the art in simulation
optimization. It shows that hybrid algorithms combining global and local
optimization methods are currently the best class of optimization approaches
in the area and it outlines the need for the development of software tools
including available algorithms.

Subject Classification

Keywords
  • Stochastic discrete event simulation
  • optimization
  • hybrid algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail