Better Algorithms for Satisfiability Problems for Formulas of Bounded Rank-width

Authors Robert Ganian, Petr Hlinený, Jan Obdrzálek



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2010.73.pdf
  • Filesize: 484 kB
  • 11 pages

Document Identifiers

Author Details

Robert Ganian
Petr Hlinený
Jan Obdrzálek

Cite As Get BibTex

Robert Ganian, Petr Hlinený, and Jan Obdrzálek. Better Algorithms for Satisfiability Problems for Formulas of Bounded Rank-width. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010). Leibniz International Proceedings in Informatics (LIPIcs), Volume 8, pp. 73-83, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010) https://doi.org/10.4230/LIPIcs.FSTTCS.2010.73

Abstract

We provide a parameterized polynomial algorithm for the propositional model counting problem #SAT, the runtime of which is single-exponential in the rank-width of a formula. Previously, analogous algorithms have been known --e.g. [Fischer, Makowsky, and Ravve]-- with a single-exponential dependency on the clique-width of a formula. Our algorithm thus presents an exponential runtime improvement (since clique-width reaches up to exponentially higher values than rank-width), and can be of practical interest for small values of rank-width. We also provide an algorithm for the MAX-SAT problem along the same lines.

Subject Classification

Keywords
  • propositional model counting; satisfiability; rank-width; clique-width ; parameterized complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail