Hitting forbidden minors: Approximation and Kernelization

Authors Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, Saket Saurabh



PDF
Thumbnail PDF

File

LIPIcs.STACS.2011.189.pdf
  • Filesize: 2.96 MB
  • 12 pages

Document Identifiers

Author Details

Fedor V. Fomin
Daniel Lokshtanov
Neeldhara Misra
Geevarghese Philip
Saket Saurabh

Cite As Get BibTex

Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh. Hitting forbidden minors: Approximation and Kernelization. In 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 9, pp. 189-200, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011) https://doi.org/10.4230/LIPIcs.STACS.2011.189

Abstract

We study a general class of problems called F-Deletion problems. In an F-Deletion problem, we are asked whether a subset of at most k
vertices can be deleted from a graph G such that the resulting graph does not contain as a minor any graph from the family F of forbidden minors. We obtain a number of algorithmic results on the F-Deletion problem when  F contains a planar graph. We give

- a linear vertex kernel on graphs excluding t-claw K_(1,t), the star with t leaves, as an induced subgraph, where t is a fixed integer.
- an approximation algorithm achieving an approximation ratio of O(log^(3/2) OPT), where $OPT$ is the size of an optimal solution on general undirected graphs.

Finally, we obtain polynomial kernels for the case when F only contains graph theta_c as a minor for a fixed integer c. The graph theta_c consists of two vertices connected by $c$ parallel edges. Even though this may appear to be a very restricted class of problems it already encompasses well-studied problems such as Vertex Cover, Feedback Vertex Set and Diamond Hitting Set. The generic kernelization algorithm is based on a non-trivial application of protrusion techniques, previously used only for problems on topological graph classes.

Subject Classification

Keywords
  • kernelization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail