We consider fragments of first-order logic and as models we allow finite and infinite words simultaneously. The only binary relations apart from equality are order comparison < and the successor predicate +1. We give characterizations of the fragments Sigma_2 = Sigma_2[<,+1] and FO^2 = FO^2[<,+1] in terms of algebraic and topological properties. To this end we introduce the factor topology over infinite words. It turns out that a language $L$ is in FO^2 cap Sigma_2 if and only if $L$ is the interior of an FO^2 language. Symmetrically, a language is in FO^2 cap Pi_2 if and only if it is the topological closure of an FO^2 language. The fragment Delta_2 = Sigma_2 cap Pi_2 contains exactly the clopen languages in FO^2. In particular, over infinite words Delta_2 is a strict subclass of FO^2. Our characterizations yield decidability of the membership problem for all these fragments over finite and infinite words; and as a corollary we also obtain decidability for infinite words. Moreover, we give a new decidable algebraic characterization of dot-depth 3/2 over finite words. Decidability of dot-depth 3/2 over finite words was first shown by Glasser and Schmitz in STACS 2000, and decidability of the membership problem for FO^2 over infinite words was shown 1998 by Wilke in his habilitation thesis whereas decidability of Sigma_2 over infinite words is new.
@InProceedings{kallas_et_al:LIPIcs.STACS.2011.356, author = {Kallas, Jakub and Kufleitner, Manfred and Lauser, Alexander}, title = {{First-order Fragments with Successor over Infinite Words}}, booktitle = {28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011)}, pages = {356--367}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-25-5}, ISSN = {1868-8969}, year = {2011}, volume = {9}, editor = {Schwentick, Thomas and D\"{u}rr, Christoph}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2011.356}, URN = {urn:nbn:de:0030-drops-30267}, doi = {10.4230/LIPIcs.STACS.2011.356}, annote = {Keywords: infinite words, regular languages, first-order logic, automata theory, semi-groups, topology} }
Feedback for Dagstuhl Publishing