LIPIcs.RTA.2011.51.pdf
- Filesize: 490 kB
- 10 pages
Singleton Tree Grammars (STGs) have recently drawn considerable attention. They generalize the sharing of subtrees known from DAGs to sharing of connected subgraphs. This allows to obtain smaller in-memory representations of trees than with DAGs. In the past years some important tree algorithms were proved to perform efficiently (without decompression) over STGs; e.g., type checking, equivalence checking, and unification. We present a tool that implements an extension of the unification algorithm for STGs. This algorithm makes extensive use of equivalence checking. For the latter we implemented two variants, the classical exact one and a recent randomized one. Our experiments show that the randomized algorithm performs better. The running times are also compared to those of unification over uncompressed trees.
Feedback for Dagstuhl Publishing