Improving Safety-Critical Systems by Visual Analysis

Authors Yi Yang, Patric Keller, Yarden Livnat, Peter Liggesmeyer



PDF
Thumbnail PDF

File

OASIcs.VLUDS.2011.43.pdf
  • Filesize: 1.47 MB
  • 16 pages

Document Identifiers

Author Details

Yi Yang
Patric Keller
Yarden Livnat
Peter Liggesmeyer

Cite AsGet BibTex

Yi Yang, Patric Keller, Yarden Livnat, and Peter Liggesmeyer. Improving Safety-Critical Systems by Visual Analysis. In Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011. Open Access Series in Informatics (OASIcs), Volume 27, pp. 43-58, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)
https://doi.org/10.4230/OASIcs.VLUDS.2011.43

Abstract

The importance analysis provides a means of analyzing the contribution of potential low-level system failures to identify and assess vulnerabilities of safety-critical systems. Common approaches attempt to enhance the system safety by addressing vulnerabilities using an iterative analysis process, while considering relevant constraints, e.g., cost, for optimizing the improvements. Typically, data regarding the analysis process is presented across several views with few interactive associations among them. Consequently, this hampers the identification of meaningful information supporting the decision making process. In this paper, we propose a visualization system that visually supports engineers in identifying proper solutions. The visualization integrates a decision tree with a plot representing the cause-effect relationship between the improvement ideas of vulnerabilities and the resulting risk reduction of system. Associating a component fault tree view with the plot allows to maintain helpful context information. The introduced visualization approach enables system and safety engineers to identify and analyze optimal solutions facilitating the improvement of the overall system safety.
Keywords
  • fault tree analysis
  • importance and sensitivity analysis
  • information vi- sualization
  • decision tree
  • safety analysis

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail