OASIcs.MCPS.2014.49.pdf
- Filesize: 415 kB
- 9 pages
With discovery of the insulin, Type-1 diabetes converted from a fatal and acute to a chronic disease which includes micro-vascular complications which range from Kidney disease to stroke and micro-vascular complications such as retinopathy, nephropathy and neuropathy. Artificial pancreas is a solution to improve the quality of life for people with this very fast growing disease in the world and to reduce the costs. Despite technological advances e.g., in subcutaneous sensors and actuators for insulin injection, modeling of blood glucose dynamics and control algorithms still need significant improvement. In this paper, we investigate challenges and opportunities for development of efficient algorithm for designing robust artificial pancreas. We discuss the state of the art and summarize clinical and in silico assessment results. We contrast conventional integer order system approach with a newly proposed fractal control and summarize its benefits.
Feedback for Dagstuhl Publishing