LIPIcs.STACS.2015.103.pdf
- Filesize: 0.65 MB
- 13 pages
We consider finite Markov decision processes (MDPs) with undiscounted total effective payoff. We show that there exist uniformly optimal pure stationary strategies that can be computed by solving a polynomial number of linear programs. We apply this result to two-player zero-sum stochastic games with perfect information and undiscounted total effective payoff, and derive the existence of a saddle point in uniformly optimal pure stationary strategies.
Feedback for Dagstuhl Publishing