LIPIcs.APPROX-RANDOM.2015.435.pdf
- Filesize: 474 kB
- 14 pages
Despite the large amount of work on solving graph problems in the data stream model, there do not exist tight space bounds for almost any of them, even in a stream with only edge insertions. For example, for testing connectivity, the upper bound is O(n * log(n)) bits, while the lower bound is only Omega(n) bits. We remedy this situation by providing the first tight Omega(n * log(n)) space lower bounds for randomized algorithms which succeed with constant probability in a stream of edge insertions for a number of graph problems. Our lower bounds apply to testing bipartiteness, connectivity, cycle-freeness, whether a graph is Eulerian, planarity, H-minor freeness, finding a minimum spanning tree of a connected graph, and testing if the diameter of a sparse graph is constant. We also give the first Omega(n * k * log(n)) space lower bounds for deterministic algorithms for k-edge connectivity and k-vertex connectivity; these are optimal in light of known deterministic upper bounds (for k-vertex connectivity we also need to allow edge duplications, which known upper bounds allow). Finally, we give an Omega(n * log^2(n)) lower bound for randomized algorithms approximating the minimum cut up to a constant factor with constant probability in a graph with integer weights between 1 and n, presented as a stream of insertions and deletions to its edges. This lower bound also holds for cut sparsifiers, and gives the first separation of maintaining a sparsifier in the data stream model versus the offline model.
Feedback for Dagstuhl Publishing