LIPIcs.CONCUR.2015.383.pdf
- Filesize: 0.62 MB
- 15 pages
Pushdown systems with transductions (TrPDSs) are an extension of pushdown systems (PDSs) by associating each transition rule with a transduction, which allows to inspect and modify the stack content at each step of a transition rule. It was shown by Uezato and Minamide that TrPDSs can model PDSs with checkpoint and discrete-timed PDSs. Moreover, TrPDSs can be simulated by PDSs and the predecessor configurations pre^*(C) of a regular set C of configurations can be computed by a saturation procedure when the closure of the transductions in TrPDSs is finite. In this work, we comprehensively investigate the reachability problem of finite TrPDSs. We propose a novel saturation procedure to compute pre^*(C) for finite TrPDSs. Also, we introduce a saturation procedure to compute the successor configurations post^*(C) of a regular set C of configurations for finite TrPDSs. From these two saturation procedures, we present two efficient implementation algorithms to compute pre^*(C) and post^*(C). Finally, we show how the presence of transductions enables the modeling of Boolean programs with call-by-reference parameter passing. The TrPDS model has finite closure of transductions which results in model-checking approach for Boolean programs with call-by-reference parameter passing against safety properties.
Feedback for Dagstuhl Publishing