LIPIcs.SWAT.2016.7.pdf
- Filesize: 0.49 MB
- 13 pages
A mergeable dictionary is a data structure storing a dynamic subset S of a totally ordered set U and supporting predecessor searches in S. Apart from insertions and deletions to S, we can both merge two arbitrarily interleaved dictionaries and split a given dictionary around some pivot x. We present an implementation of a mergeable dictionary matching the optimal amortized logarithmic bounds of Iacono and Ökzan [Iacono/Ökzan,ICALP'10]. However, our solution is significantly simpler. The proposed data structure can also be generalized to the case when the universe U is dynamic or infinite, thus addressing one issue of [Iacono/Ökzan,ICALP'10].
Feedback for Dagstuhl Publishing