The problem Max W-Light (Max W-Heavy) for an undirected graph is to assign a direction to each edge so that the number of vertices of outdegree at most W (resp. at least W) is maximized. It is known that these problems are NP-hard even for fixed W. For example, Max 0-Light is equivalent to the problem of finding a maximum independent set. In this paper, we show that for any fixed constant W, Max W-Heavy can be solved in linear time for hereditary graph classes for which treewidth is bounded by a function of degeneracy. We show that such graph classes include chordal graphs, circular-arc graphs, d-trapezoid graphs, chordal bipartite graphs, and graphs of bounded clique-width. To have a polynomial-time algorithm for Max W-Light, we need an additional condition of a polynomial upper bound on the number of potential maximal cliques to apply the metatheorem by Fomin, Todinca, and Villanger [SIAM J. Comput., 44(1):57-87, 2015]. The aforementioned graph classes, except bounded clique-width graphs, satisfy such a condition. For graphs of bounded clique-width, we present a dynamic programming approach not using the metatheorem to show that it is actually polynomial-time solvable for this graph class too. We also study the parameterized complexity of the problems and show some tractability and intractability results.
@InProceedings{bodlaender_et_al:LIPIcs.ISAAC.2016.20, author = {Bodlaender, Hans L. and Ono, Hirotaka and Otachi, Yota}, title = {{Degree-Constrained Orientation of Maximum Satisfaction: Graph Classes and Parameterized Complexity}}, booktitle = {27th International Symposium on Algorithms and Computation (ISAAC 2016)}, pages = {20:1--20:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-026-2}, ISSN = {1868-8969}, year = {2016}, volume = {64}, editor = {Hong, Seok-Hee}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.20}, URN = {urn:nbn:de:0030-drops-67898}, doi = {10.4230/LIPIcs.ISAAC.2016.20}, annote = {Keywords: orientation, graph class, width parameter, parameterized complexity} }
Feedback for Dagstuhl Publishing