LIPIcs.STACS.2017.50.pdf
- Filesize: 0.56 MB
- 13 pages
We introduce and study Minkowski games. In these games, two players take turns to choose positions in R^d based on some rules. Variants include boundedness games, where one player wants to keep the positions bounded (while the other wants to escape to infinity), and safety games, where one player wants to stay within a given set (while the other wants to leave it). We provide some general characterizations of which player can win such games, and explore the computational complexity of the associated decision problems. A natural representation of boundedness games yields coNP-completeness, whereas the safety games are undecidable.
Feedback for Dagstuhl Publishing