LIPIcs.STACS.2017.28.pdf
- Filesize: 476 kB
- 13 pages
By Brook's Theorem, every n-vertex graph of maximum degree at most Delta >= 3 and clique number at most Delta is Delta-colorable, and thus it has an independent set of size at least n/Delta. We give an approximate characterization of graphs with independence number close to this bound, and use it to show that the problem of deciding whether such a graph has an independent set of size at least n/Delta+k has a kernel of size O(k).
Feedback for Dagstuhl Publishing