Let P be a finite set of points in the plane in general position, that is, no three points of P are on a common line. We say that a set H of five points from P is a 5-hole in P if H is the vertex set of a convex 5-gon containing no other points of P. For a positive integer n, let h_5(n) be the minimum number of 5-holes among all sets of n points in the plane in general position. Despite many efforts in the last 30 years, the best known asymptotic lower and upper bounds for h_5(n) have been of order Omega(n) and O(n^2), respectively. We show that h_5(n) = Omega(n(log n)^(4/5)), obtaining the first superlinear lower bound on h_5(n). The following structural result, which might be of independent interest, is a crucial step in the proof of this lower bound. If a finite set P of points in the plane in general position is partitioned by a line l into two subsets, each of size at least 5 and not in convex position, then l intersects the convex hull of some 5-hole in P. The proof of this result is computer-assisted.
@InProceedings{aichholzer_et_al:LIPIcs.SoCG.2017.8, author = {Aichholzer, Oswin and Balko, Martin and Hackl, Thomas and Kyncl, Jan and Parada, Irene and Scheucher, Manfred and Valtr, Pavel and Vogtenhuber, Birgit}, title = {{A Superlinear Lower Bound on the Number of 5-Holes}}, booktitle = {33rd International Symposium on Computational Geometry (SoCG 2017)}, pages = {8:1--8:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-038-5}, ISSN = {1868-8969}, year = {2017}, volume = {77}, editor = {Aronov, Boris and Katz, Matthew J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.8}, URN = {urn:nbn:de:0030-drops-72008}, doi = {10.4230/LIPIcs.SoCG.2017.8}, annote = {Keywords: Erd\"{o}s-Szekeres type problem, k-hole, empty k-gon, empty pentagon, planar point set} }
Feedback for Dagstuhl Publishing