A Classical Groupoid Model for Quantum Networks

Authors David Reutter, Jamie Vicary



PDF
Thumbnail PDF

File

LIPIcs.CALCO.2017.19.pdf
  • Filesize: 0.53 MB
  • 18 pages

Document Identifiers

Author Details

David Reutter
Jamie Vicary

Cite As Get BibTex

David Reutter and Jamie Vicary. A Classical Groupoid Model for Quantum Networks. In 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 72, pp. 19:1-19:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017) https://doi.org/10.4230/LIPIcs.CALCO.2017.19

Abstract

We give a mathematical analysis of a new type of classical computer network architecture, intended as a model of a new technology that has recently been proposed in industry. Our approach is based on groubits, generalizations of classical bits based on groupoids. This network architecture allows the direct execution of a number of protocols that are usually associated with quantum networks, including teleportation, dense coding and secure key distribution.

Subject Classification

Keywords
  • groupoids
  • networks
  • quantum
  • semantics
  • key distribution

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Akintomide Adesanmi and Lotfi Mhamdi. Controlling TCP Incast congestion in data centre networks. In ICCW 2015. IEEE, 2015. URL: http://dx.doi.org/10.1109/iccw.2015.7247446.
  2. Miriam Backens and Ali Nabi Duman. A complete graphical calculus for Spekkens' toy bit theory. Foundations of Physics, 46(1):70-103, 2015. URL: http://dx.doi.org/10.1007/s10701-015-9957-7.
  3. John Baez and James Dolan. From finite sets to Feynman diagrams. In Björn Engquist and Wilfried Schmid, editors, Mathematics Unlimited, pages 29-50. Springer, 2001. URL: http://arxiv.org/abs/math/0004133.
  4. John Baez, Alexander Hoffnung, and Christopher Walker. HDA VII: Groupoidification. Theory and Applications of Categories, 24(18):489-553, 2010. URL: http://arxiv.org/abs/0908.4305.
  5. Krzysztof Bar and Jamie Vicary. Groupoid semantics for thermal computing, 2014. URL: http://arxiv.org/abs/1401.3280.
  6. Charles H. Bennett and Gilles Brassard. Quantum public key distribution. IBM Tech. Disc. Bul., 28:3153-3163, 1985. Google Scholar
  7. Francois Bergeron, Gilbert Labelle, Pierre Leroux, and Margaret Readdy. Combinatorial Species and Tree-like Structures. Cambridge University Press (CUP), 1997. URL: http://dx.doi.org/10.1017/cbo9781107325913.
  8. Daniel J. Bernstein. Introduction to post-quantum cryptography. In Post-Quantum Cryptography, pages 1-14. Springer Nature, 2009. URL: http://dx.doi.org/10.1007/978-3-540-88702-7_1.
  9. Paul Borrill. The timeless datacentre. Stanford Colloquium on Computer Systems, 2016. URL: https://www.youtube.com/watch?v=IPTlTmH-YvQ.
  10. Nils Carqueville and Ingo Runkel. Orbifold completion of defect bicategories. Quantum Topology, 7(2):203-279, 2016. URL: http://dx.doi.org/10.4171/qt/76.
  11. Bob Coecke, Bill Edwards, and Robert W. Spekkens. Phase groups and the origin of non-locality for qubits. ENTCS, 270(2):15-36, 2011. URL: http://dx.doi.org/10.1016/j.entcs.2011.01.021.
  12. Bob Coecke and Simon Perdrix. Environment and classical channels in categorical quantum mechanics. LMCS, 8(4), 2012. URL: http://dx.doi.org/10.2168/lmcs-8(4:14)2012.
  13. Leonardo Disilvestro and Damian Markham. Quantum protocols within Spekkens' toy model. Physical Review A, 95(5), 2017. URL: http://dx.doi.org/10.1103/physreva.95.052324.
  14. Artur Ekert. Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67:661, 1991. URL: http://dx.doi.org/10.1103/PhysRevLett.67.661.
  15. Romain Alléaume et al. Using quantum key distribution for cryptographic purposes: a survey. TCS, 560(1):62-81, 2014. URL: http://arxiv.org/abs/quant-ph/0701168.
  16. Sami Iren, Paul D. Amer, and Phillip T. Conrad. The transport layer: tutorial and survey. ACM Computing Surveys, 31(4):360-404, 1999. URL: http://dx.doi.org/10.1145/344588.344609.
  17. Arthur Jaffe, Zhengwei Liu, and Alex Wozniakowski. Holographic software for quantum networks, 2016. URL: https://arxiv.org/abs/1605.00127.
  18. Vaughan F. R. Jones. Planar algebras, I, 1999. URL: http://arxiv.org/abs/math/9909027.
  19. Vaughan F. R. Jones, Scott Morrison, and Noah Snyder. The classification of subfactors of index at most 5. Bull. Amer. Math. Soc., 51(2):277-327, 2013. URL: http://dx.doi.org/10.1090/s0273-0979-2013-01442-3.
  20. André Joyal. Une théorie combinatoire des séries formelles. Advances in Mathematics, 42(1):1-82, 1981. URL: http://dx.doi.org/10.1016/0001-8708(81)90052-9.
  21. Ueli M. Maurer. Protocols for secret key agreement by public discussion based on common information. IEEE Transactions on Information Theory, 39(3):733-742, 1993. URL: http://dx.doi.org/10.1007/3-540-48071-4_32.
  22. Scott Morrison and Emily Peters. The little desert? Some subfactors with index in the interval (5, 3 + √ 5). International Journal of Mathematics, 25(08):1450080, 2014. URL: http://dx.doi.org/10.1142/s0129167x14500803.
  23. Jeffrey Morton. Categorified algebra and quantum mechanics. Theory and Applications of Categories, 16(29):785-854, 2006. URL: http://arxiv.org/abs/math/0601458.
  24. Michael Nielsen and Isaac Chuang. Quantum Computation and Quantum Information. CUP, 2009. URL: http://dx.doi.org/10.1017/cbo9780511976667.
  25. Adrian Ocneanu. Quantized groups, string algebras, and Galois theory for algebras. In Operator Algebras and Applications, pages 119-172. CUP, 1989. URL: http://dx.doi.org/10.1017/cbo9780511662287.008.
  26. Matthew F. Pusey. Stabilizer notation for Spekkens' toy theory. Foundations of Physics, 42(5):688-708, 2012. URL: http://dx.doi.org/10.1007/s10701-012-9639-7.
  27. David Reutter and Jamie Vicary. Biunitary constructions in quantum information, 2016. URL: http://arxiv.org/abs/1609.07775.
  28. David Reutter and Jamie Vicary. A classical groupoid model for quantum networks, 2017. URL: http://arxiv.org/abs/1707.00966.
  29. David Reutter and Jamie Vicary. Shaded tangles for the design and verification of quantum programs, 2017. URL: http://arxiv.org/abs/1701.03309.
  30. Peter Selinger. A survey of graphical languages for monoidal categories. In New Structures for Physics, pages 289-355. Springer, 2010. URL: http://dx.doi.org/10.1007/978-3-642-12821-9_4.
  31. Robert W. Spekkens. Evidence for the epistemic view of quantum states: A toy theory. Physical Review A, 75(3), 2007. URL: http://dx.doi.org/10.1103/physreva.75.032110.
  32. Umesh Vazirani and Thomas Vidick. Robust device independent quantum key distribution. In ITCS, 2014. Google Scholar
  33. Jamie Vicary. Higher semantics of quantum protocols. In Proceedings of LICS, 2012. URL: http://dx.doi.org/10.1109/lics.2012.70.
  34. Yongwang Zhao, Zhibin Yang, and Dianfu Ma. A survey on formal specification and verification of separation kernels. Frontiers of Computer Science, 2017. URL: http://dx.doi.org/10.1007/s11704-016-4226-2.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail