Quantum Query Algorithms are Completely Bounded Forms

Authors Srinivasan Arunachalam, Jop Briët, Carlos Palazuelos



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2018.3.pdf
  • Filesize: 0.69 MB
  • 21 pages

Document Identifiers

Author Details

Srinivasan Arunachalam
Jop Briët
Carlos Palazuelos

Cite As Get BibTex

Srinivasan Arunachalam, Jop Briët, and Carlos Palazuelos. Quantum Query Algorithms are Completely Bounded Forms. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, pp. 3:1-3:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.ITCS.2018.3

Abstract

We prove a characterization of quantum query algorithms in terms of polynomials satisfying a certain (completely bounded) norm constraint. Based on this, we obtain a refined notion of approximate polynomial degree that equals the quantum query complexity, answering a question of Aaronson et al. (CCC'16). Using this characterization, we show that many  polynomials of degree at least 4 are far from those coming from quantum query algorithms.
Our proof is based on a fundamental result of Christensen and Sinclair (J. Funct. Anal., 1987) that generalizes the well-known Stinespring representation for quantum channels to multilinear forms.
We also give a simple and short proof of one of the results of Aaronson et al. showing an equivalence between one-query quantum algorithms and bounded quadratic polynomials.

Subject Classification

Keywords
  • Quantum query algorithms
  • operator space theory
  • polynomial method
  • approximate degree.

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. S. Aaronson and A. Ambainis. Forrelation: A problem that optimally separates quantum from classical computing. In Proceedings of 47th ACM STOC, pages 307-316, 2015. arXiv:1411.5729v1. Google Scholar
  2. S. Aaronson, A. Ambainis, J. Iraids, M. Kokainis, and J. Smotrovs. Polynomials, quantum query complexity, and Grothendieck’s inequality. In 31st Conference on Computational Complexity, CCC 2016, pages 25:1-25:19, 2016. arXiv:1511.08682. Google Scholar
  3. S. Aaronson, S. Ben-David, and R. Kothari. Separations in query complexity using cheat sheets. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 863-876, 2016. arXiv:1511.01937. Google Scholar
  4. S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinctness problems. J. ACM, 51(4):595-605, 2004. Google Scholar
  5. N. Alon and A. Naor. Approximating the cut-norm via Grothendieck’s inequality. SIAM Journal of Computing, 35(4):787-803, 2006. Earlier version in STOC'04. Google Scholar
  6. A. Ambainis. Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci., 64(4):750-767, 2002. Earlier version in STOC'00. arXiv:quant-ph/0002066. Google Scholar
  7. A. Ambainis. Polynomial degree vs. quantum query complexity. J. Comput. System Sci., 72(2):220-238, 2006. Earlier version in FOCS'03. quant-ph/0305028. Google Scholar
  8. A. Ambainis. Quantum walk algorithm for element distinctness. SIAM J. Comput., 37(1):210-239, 2007. Earlier version in FOCS'04. arXiv:quant-ph/0311001. Google Scholar
  9. A. Ambainis, K. Balodis, A. Belovs, T. Lee, M. Santha, and J. Smotrovs. Separations in query complexity based on pointer functions. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages 800-813, 2016. arXiv:1506.04719. Google Scholar
  10. W. Arveson. An invitation to C^*-algebras, volume 39 of Graduate Texts in Mathematics. Springer, 2012. Google Scholar
  11. Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum lower bounds by polynomials. J. ACM, 48(4):778-797, 2001. Earlier version in FOCS'98. quant-ph/9802049. URL: http://dx.doi.org/10.1145/502090.502097.
  12. A. Belovs. Span programs for functions with constant-sized 1-certificates. In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, pages 77-84, 2012. arXiv:1105.4024. Google Scholar
  13. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum computing. SIAM Journal of Computing, 26(5):1510-1523, 1997. quant-ph/9701001. Google Scholar
  14. M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor. The Grothendieck constant is strictly smaller than Krivine’s bound. Forum Math. Pi, 1:453-462, 2013. Preliminary version in FOCS'11. arXiv:1103.6161. Google Scholar
  15. J. Briët, H. Buhrman, T. Lee, and T. Vidick. All Schatten spaces endowed with the Schur product are Q-algebras. Journal of Functional Analysis, 262(1):1-9, 2012. Google Scholar
  16. J. Briët, H. Buhrman, T. Lee, and T. Vidick. Multipartite entanglement in XOR games. Quantum Information &Computation, 13(3-4):334-360, 2013. arXiv:0911.4007. Google Scholar
  17. J. Briët and T. Vidick. Explicit lower and upper bounds on the entangled value of multiplayer XOR games. Communications in Mathematical Physics, 321(1):181-207, 2013. arXiv:1108.5647. Google Scholar
  18. M. Bun, R. Kothari, and J. Thaler. The polynomial method strikes back: Tight quantum query bounds via dual polynomials. arXiv:1710.09079, 2017. Google Scholar
  19. E. Christensen and A. M. Sinclair. Representations of completely bounded multilinear operators. Journal of Functional analysis, 72(1):151-181, 1987. Google Scholar
  20. R. Cleve, P. Høyer, B. Toner, and J. Watrous. Consequences and limits of nonlocal strategies. In Computational Complexity, 2004. Proceedings. 19th IEEE Annual Conference on, pages 236-249. IEEE, 2004. arXiv:quant-ph/0404076. Google Scholar
  21. A. Davie. Lower bound for K_G. Unpublished, 1984. Google Scholar
  22. J. Diestel, H. Jarchow, and A. Tonge. Absolutely summing operators, volume 43 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Google Scholar
  23. E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the Hamiltonian NAND tree. Theory of Computation, 4(8):169-190, 2008. arXiv:quant-ph/0702144. Google Scholar
  24. L. T. Gardner. An elementary proof of the Russo-Dye theorem. Proceedings of the American Mathematical Society, 90(1):171, 1984. Google Scholar
  25. A. Grothendieck. Résumé de la théorie métrique des produits tensoriels topologiques (French). Bol. Soc. Mat. São Paulo, 8:1-79, 1953. Google Scholar
  26. L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212-219. ACM, 1996. Google Scholar
  27. P. Høyer, T. Lee, and R. Špalek. Negative weights make adversaries stronger. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, 2007, pages 526-535, 2007. arXiv:quant-ph/0611054. Google Scholar
  28. N. Johnston, D. W. Kribs, and V. I. Paulsen. Computing stabilized norms for quantum operations via the theory of completely bounded maps. Quantum Information & Computation, 9(1):16-35, 2009. arXiv:0711.3636. Google Scholar
  29. J. Kaniewski, T. Lee, and R. de Wolf. Query complexity in expectation. In Automata, Languages, and Programming - 42nd International Colloquium, ICALP, pages 761-772, 2015. arXiv:1411.7280. Google Scholar
  30. S. Khot and A. Naor. Grothendieck-type inequalities in combinatorial optimization. Communications on Pure and Applied Mathematics, 65(7):992-1035, 2012. arXiv:1108.2464. Google Scholar
  31. C. M. Le, E. Levina, and R. Vershynin. Sparse random graphs: regularization and concentration of the Laplacian. arXiv:1502.03049, 2015. Google Scholar
  32. T. Lee, R. Mittal, B. W. Reichardt, R. Špalek, and M. Szegedy. Quantum query complexity of state conversion. In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, pages 344-353, 2011. arXiv:1011.3020. Google Scholar
  33. F. Magniez, A. Nayak, J. Roland, and M. Santha. Search via quantum walk. SIAM J. Comput., 40(1):142-164, 2011. Earlier version in STOC'07. arXiv:quant-ph/0608026. Google Scholar
  34. A. Montanaro. Nonadaptive quantum query complexity. Inf. Process. Lett., 110(24), 2010. Google Scholar
  35. A. Montanaro, H. Nishimura, and R. Raymond. Unbounded-error quantum query complexity. Theor. Comput. Sci., 412(35):4619-4628, 2011. Google Scholar
  36. Gerard J. Murphy. C^*-algebras and operator theory. Academic Press, Inc., Boston, MA, 1990. Google Scholar
  37. T. Oikhberg and G. Pisier. The "maximal" tensor product of operator spaces. Proceedings of the Edinburgh Mathematical Society, 42(2):267-284, 1999. Google Scholar
  38. C. Palazuelos and T. Vidick. Survey on nonlocal games and operator space theory. Journal of Mathematical Physics, 57(1):015220, 2016. Google Scholar
  39. V. Paulsen. Completely bounded maps and operator algebras, volume 78. Cambridge University Press, Cambridge, 2002. Google Scholar
  40. V. I. Paulsen and R. R. Smith. Multilinear maps and tensor norms on operator systems. Journal of functional analysis, 73(2):258-276, 1987. Google Scholar
  41. D. Pérez-García, M. Wolf, C. Palazuelos, I. Villanueva, and M. Junge. Unbounded violation of tripartite Bell inequalities. Communications in Mathematical Physics, 279:455, 2008. arXiv:quant-ph/0702189. Google Scholar
  42. G. Pisier. Introduction to operator space theory, volume 294 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2003. Google Scholar
  43. G. Pisier. Grothendieck’s theorem, past and present. Bull. Amer. Math. Soc., 49(2):237-323, 2012. also available at arXiv:1101.4195. Google Scholar
  44. D. Pollard. Convergence of stochastic processes. Science &Business Media. Springer, 2012. Google Scholar
  45. J. Reeds. A new lower bound on the real Grothendieck constant. Manuscript (http://www.dtc.umn.edu/~reedsj/bound2.dvi), 1991.
  46. B. Reichardt. Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pages 544-551, 2009. arXiv:0904.2759. Google Scholar
  47. B. Reichardt. Reflections for quantum query algorithms. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pages 560-569, 2011. arXiv:1005.1601. Google Scholar
  48. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal of Computing, 26(5):1484-1509, 1997. Earlier version in FOCS'94. Google Scholar
  49. D. Simon. On the power of quantum computation. Siam journal of computing, 26(5):1474-1483, 1997. Earlier version in FOCS'94. Google Scholar
  50. R.R. Smith. Completely bounded multilinear maps and Grothendieck’s inequality. Bulletin of the London Mathematical Society, 20(6):606-612, 1988. Google Scholar
  51. T. Tao. Topics in random matrix theory, volume 132. American Mathematical Society, 2012. Google Scholar
  52. J. A. Tropp. Column subset selection, matrix factorization, and eigenvalue optimization. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 978-986, 2009. arXiv:0806.4404. Google Scholar
  53. B. S. Tsirelson. Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Soviet Math., 36:557-570, 1987. Google Scholar
  54. R. de Wolf. Nondeterministic quantum query and communication complexities. SIAM J. Comput., 32(3):681-699, 2003. cs.CC/0001014. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail