OASIcs.ICLP.2017.12.pdf
- Filesize: 477 kB
- 12 pages
To solve hard problems efficiently via answer set programming (ASP), a promising approach is to take advantage of the fact that real-world instances of many hard problems exhibit small treewidth. Algorithms that exploit this have already been proposed -- however, they suffer from an enormous overhead. In the thesis, we present improvements in the algorithmic methodology for leveraging bounded treewidth that are especially targeted toward problems involving subset minimization. This can be useful for many problems at the second level of the polynomial hierarchy like solving disjunctive ground ASP. Moreover, we define classes of non-ground ASP programs such that grounding such a program together with input facts does not lead to an excessive increase in treewidth of the resulting ground program when compared to the treewidth of the input. This allows ASP users to take advantage of the fact that state-of-the-art ASP solvers perform better on ground programs of small treewidth. Finally, we resolve several open questions on the complexity of alliance problems in graphs. In particular, we settle the long-standing open questions of the complexity of the Secure Set problem and whether the Defensive Alliance problem is fixed-parameter tractable when parameterized by treewidth.
Feedback for Dagstuhl Publishing