Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH scholarly article en Cai, Xing Shi; Holmgren, Cecilia; Janson, Svante; Johansson, Tony; Skerman, Fiona http://www.dagstuhl.de/lipics License
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-89085
URL:

; ; ; ;

Inversions in Split Trees and Conditional Galton-Watson Trees

pdf-format:


Abstract

We study I(T), the number of inversions in a tree T with its vertices labeled uniformly at random. We first show that the cumulants of I(T) have explicit formulas. Then we consider X_n, the normalized version of I(T_n), for a sequence of trees T_n. For fixed T_n's, we prove a sufficient condition for X_n to converge in distribution. For T_n being split trees [Devroye, 1999], we show that X_n converges to the unique solution of a distributional equation. Finally, when T_n's are conditional Galton-Watson trees, we show that X_n converges to a random variable defined in terms of Brownian excursions. Our results generalize and extend previous work by Panholzer and Seitz [Panholzer and Seitz, 2012].

BibTeX - Entry

@InProceedings{cai_et_al:LIPIcs:2018:8908,
  author =	{Xing Shi Cai and Cecilia Holmgren and Svante Janson and Tony Johansson and Fiona Skerman},
  title =	{{Inversions in Split Trees and Conditional Galton-Watson Trees}},
  booktitle =	{29th International Conference on Probabilistic,  Combinatorial and Asymptotic Methods for the Analysis of Algorithms  (AofA 2018)},
  pages =	{15:1--15:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-078-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{110},
  editor =	{James Allen Fill and Mark Daniel Ward},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/8908},
  URN =		{urn:nbn:de:0030-drops-89085},
  doi =		{10.4230/LIPIcs.AofA.2018.15},
  annote =	{Keywords: inversions, random trees, split trees, Galton-Watson trees, permutation, cumulant}
}

Keywords: inversions, random trees, split trees, Galton-Watson trees, permutation, cumulant
Seminar: 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)
Issue date: 2018
Date of publication: 2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI