LIPIcs.ICALP.2019.76.pdf
- Filesize: 455 kB
- 14 pages
The 0-1 knapsack problem is an important NP-hard problem that admits fully polynomial-time approximation schemes (FPTASs). Previously the fastest FPTAS by Chan (2018) with approximation factor 1+epsilon runs in O~(n + (1/epsilon)^{12/5}) time, where O~ hides polylogarithmic factors. In this paper we present an improved algorithm in O~(n+(1/epsilon)^{9/4}) time, with only a (1/epsilon)^{1/4} gap from the quadratic conditional lower bound based on (min,+)-convolution. Our improvement comes from a multi-level extension of Chan’s number-theoretic construction, and a greedy lemma that reduces unnecessary computation spent on cheap items.
Feedback for Dagstuhl Publishing