LIPIcs.ECRTS.2019.2.pdf
- Filesize: 0.54 MB
- 24 pages
Attacks on real-time embedded systems can endanger lives and critical infrastructure. Despite this, techniques for securing embedded systems software have not been widely studied. Many existing security techniques for general-purpose computers rely on assumptions that do not hold in the embedded case. This paper focuses on one such technique, control-flow integrity (CFI), that has been vetted as an effective countermeasure against control-flow hijacking attacks on general-purpose computing systems. Without the process isolation and fine-grained memory protections provided by a general-purpose computer with a rich operating system, CFI cannot provide any security guarantees. This work proposes RECFISH, a system for providing CFI guarantees on ARM Cortex-R devices running minimal real-time operating systems. We provide techniques for protecting runtime structures, isolating processes, and instrumenting compiled ARM binaries with CFI protection. We empirically evaluate RECFISH and its performance implications for real-time systems. Our results suggest RECFISH can be directly applied to binaries without compromising real-time performance; in a test of over six million realistic task systems running FreeRTOS, 85% were still schedulable after adding RECFISH.
Feedback for Dagstuhl Publishing