LIPIcs.MFCS.2019.25.pdf
- Filesize: 492 kB
- 14 pages
This paper introduces and studies a notion of algorithmic randomness for subgroups of rationals. Given a randomly generated additive subgroup (G,+) of rationals, two main questions are addressed: first, what are the model-theoretic and recursion-theoretic properties of (G,+); second, what learnability properties can one extract from G and its subclass of finitely generated subgroups? For the first question, it is shown that the theory of (G,+) coincides with that of the additive group of integers and is therefore decidable; furthermore, while the word problem for G with respect to any generating sequence for G is not even semi-decidable, one can build a generating sequence beta such that the word problem for G with respect to beta is co-recursively enumerable (assuming that the set of generators of G is limit-recursive). In regard to the second question, it is proven that there is a generating sequence beta for G such that every non-trivial finitely generated subgroup of G is recursively enumerable and the class of all such subgroups of G is behaviourally correctly learnable, that is, every non-trivial finitely generated subgroup can be semantically identified in the limit (again assuming that the set of generators of G is limit-recursive). On the other hand, the class of non-trivial finitely generated subgroups of G cannot be syntactically identified in the limit with respect to any generating sequence for G. The present work thus contributes to a recent line of research studying algorithmically random infinite structures and uncovers an interesting connection between the arithmetical complexity of the set of generators of a randomly generated subgroup of rationals and the learnability of its finitely generated subgroups.
Feedback for Dagstuhl Publishing