LIPIcs.ISAAC.2019.11.pdf
- Filesize: 0.63 MB
- 17 pages
Given a set P of h pairwise disjoint simple polygonal obstacles in R^2 defined with n vertices, we compute a sketch Omega of P whose size is independent of n, depending only on h and the input parameter epsilon. We utilize Omega to compute a (1+epsilon)-approximate geodesic shortest path between the two given points in O(n + h((lg n) + (lg h)^(1+delta) + (1/epsilon) lg(h/epsilon)))) time. Here, epsilon is a user parameter, and delta is a small positive constant (resulting from the time for triangulating the free space of P using the algorithm in [Bar-Yehuda and Chazelle, 1994]). Moreover, we devise a (2+epsilon)-approximation algorithm to answer two-point Euclidean distance queries for the case of convex polygonal obstacles.
Feedback for Dagstuhl Publishing