Challenges and Trends in Probabilistic Programming (Dagstuhl Seminar 15181)

Authors Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, Annabelle McIver and all authors of the abstracts in this report



PDF
Thumbnail PDF

File

DagRep.5.4.123.pdf
  • Filesize: 0.83 MB
  • 19 pages

Document Identifiers

Author Details

Gilles Barthe
Andrew D. Gordon
Joost-Pieter Katoen
Annabelle McIver
and all authors of the abstracts in this report

Cite AsGet BibTex

Gilles Barthe, Andrew D. Gordon, Joost-Pieter Katoen, and Annabelle McIver. Challenges and Trends in Probabilistic Programming (Dagstuhl Seminar 15181). In Dagstuhl Reports, Volume 5, Issue 4, pp. 123-141, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)
https://doi.org/10.4230/DagRep.5.4.123

Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 15181 "Challenges and Trends in Probabilistic Programming". Probabilistic programming is at the heart of machine learning for describing distribution functions; Bayesian inference is pivotal in their analysis. Probabilistic programs are used in security for describing both cryptographic constructions (such as randomised encryption) and security experiments. In addition, probabilistic models are an active research topic in quantitative information now. Quantum programs are inherently probabilistic due to the random outcomes of quantum measurements. Finally, there is a rapidly growing interest in program analysis of probabilistic programs, whether it be using model checking, theorem proving, static analysis, or similar. Dagstuhl Seminar 15181 brought researchers from these various research communities together so as to exploit synergies and realize cross-fertilisation.
Keywords
  • Bayesian networks
  • differential privacy
  • machine learning
  • probabilistic programs
  • security
  • semantics
  • static analysis
  • verification

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads