This paper presents a method of constructing pre-routed FPGA cores. This lays the foundations for a rapid system construction framework. There are two major challenges that need to be considered by this framework. The first is how to manage the wires crossing a core’s borders. The second is how to maintain an acceptable level of flexibility for system construction with only a minimum of overhead. Typical FPGA based systems are built up from cores developed by multiple third parties. Each compilation step that a developer performs before delivery adds value in terms of a cores performance, predictability and readiness for purpose. The perceived advantages of full independent core development are weighed against the loss in placement flexibility and elimination of the opportunities to optimise a system across cores. Few existing methodologies allow the independent compilation of FPGA cores through every step of the design flow. The wire detail of modern FPGA architectures is captured in a model that is used to analyse how the interconnect architecture effects the shape of pre-routed cores and the wire bandwidth available to interfaces. We have adapted academic placement and routing algorithms to our architectural model. The design flow has been modified to include a wire policy and interface constraints framework that tightly constrains the use of the wires that cross a core’s boundaries. Using this tool set we investigate the effect of pre-routing on overall system optimality. Compiling a set of example systems using the pre-routed approach shows only a 2% increase in total wire use over the pre-placed approach. Place and route times are vastly reduced for systems composed of regular modules. Being able to break a system into independent cores reduces the placement and routing time even for non-regular systems, and will open opportunities for its possible use in resource constrained embedded systems.
@InProceedings{maskell_et_al:DagSemProc.06141.12, author = {Maskell, Douglas and Oliver, Timothy F.}, title = {{Pre-Routed FPGA Cores for Rapid System Construction in a Dynamic Reconfigurable System}}, booktitle = {Dynamically Reconfigurable Architectures}, pages = {1--10}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2006}, volume = {6141}, editor = {Peter M. Athanas and J\"{u}rgen Becker and Gordon Brebner and J\"{u}rgen Teich}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06141.12}, URN = {urn:nbn:de:0030-drops-7410}, doi = {10.4230/DagSemProc.06141.12}, annote = {Keywords: Dynamic Reconfiguration, Rapid Construction, FPGA Routing matrix} }
Feedback for Dagstuhl Publishing