We discuss the impact of data structures in quantifier elimination. We analyze the arithmetic complexity of the feasibility problem in linear optimization theory as a quantifier-elimination problem. For the case of polyhedra defined by $2n$ halfspaces in $mathbb{R}^n$ we prove that, if dense representation is used to code polynomials, any quantifier-free formula expressing the set of parameters describing nonempty polyhedra has size $Omega(4^{n})$.
@InProceedings{grimson:DagSemProc.07212.3, author = {Grimson, Rafael}, title = {{A lower bound for the complexity of linear optimization from a quantifier-elimination point of view}}, booktitle = {Constraint Databases, Geometric Elimination and Geographic Information Systems}, pages = {1--6}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2007}, volume = {7212}, editor = {Bernd Bank and Max J. Egenhofer and Bart Kuijpers}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07212.3}, URN = {urn:nbn:de:0030-drops-12837}, doi = {10.4230/DagSemProc.07212.3}, annote = {Keywords: Quantifier elimination, dense representation, instrinsic, lower bound} }
Feedback for Dagstuhl Publishing