Analyzing and Benchmarking ZK-Rollups

Authors Stefanos Chaliasos, Itamar Reif, Adrià Torralba-Agell, Jens Ernstberger, Assimakis Kattis, Benjamin Livshits



PDF
Thumbnail PDF

File

LIPIcs.AFT.2024.6.pdf
  • Filesize: 0.86 MB
  • 24 pages

Document Identifiers

Author Details

Stefanos Chaliasos
  • Imperial College London, UK
Itamar Reif
  • Astria, New York, NY, USA
Adrià Torralba-Agell
  • Universitat Oberta de Catalunya, San Martí, Spain
Jens Ernstberger
  • Technische Universität München, Germany
Assimakis Kattis
  • Athens, Greece
Benjamin Livshits
  • Imperial College London, UK
  • Matter Labs, London, UK

Acknowledgements

We thank Ramon Canales, Emil Luta, Roman Brodetski, Robert Remen, Fractasy Romero, Ignasi Ramos, Héctor Masip Ardevol, and Carlos Matallana for their insightful feedback and help with technical issues. We also thank Cristina Pérez-Solà for proofreading this manuscript and supervising Adrià Torralba-Agell while working on this project.

Cite AsGet BibTex

Stefanos Chaliasos, Itamar Reif, Adrià Torralba-Agell, Jens Ernstberger, Assimakis Kattis, and Benjamin Livshits. Analyzing and Benchmarking ZK-Rollups. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 6:1-6:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.AFT.2024.6

Abstract

As blockchain technology continues to transform the realm of digital transactions, scalability has emerged as a critical issue. This challenge has spurred the creation of innovative solutions, particularly Layer 2 scalability techniques like rollups. Among these, ZK-Rollups are notable for employing Zero-Knowledge Proofs to facilitate prompt on-chain transaction verification, thereby improving scalability and efficiency without sacrificing security. Nevertheless, the intrinsic complexity of ZK-Rollups has hindered an exhaustive evaluation of their efficiency, economic impact, and performance. This paper offers a theoretical and empirical examination aimed at comprehending and evaluating ZK-Rollups, with particular attention to ZK-EVMs. We conduct a qualitative analysis to break down the costs linked to ZK-Rollups and scrutinize the design choices of well-known implementations. Confronting the inherent difficulties in benchmarking such intricate systems, we introduce a systematic methodology for their assessment, applying our method to two prominent ZK-Rollups: Polygon zkEVM and zkSync Era. Our research provides initial findings that illuminate trade-offs and areas for enhancement in ZK-Rollup implementations, delivering valuable insights for future research, development, and deployment of these systems.

Subject Classification

ACM Subject Classification
  • Security and privacy → Cryptography
Keywords
  • Zero-Knowledge Proofs
  • ZK-Rollups
  • Benchmarking
  • Blockchain Scalability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-Kogias. Channels: Horizontal scaling and confidentiality on permissioned blockchains. In Javier López, Jianying Zhou, and Miguel Soriano, editors, Computer Security - 23rd European Symposium on Research in Computer Security, ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part I, volume 11098 of Lecture Notes in Computer Science, pages 111-131. Springer, Springer, 2018. URL: https://doi.org/10.1007/978-3-319-99073-6_6.
  2. Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Blitz: Secure multi-hop payments without two-phase commits. In Michael D. Bailey and Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, pages 4043-4060. USENIX Association, 2021. URL: https://www.usenix.org/conference/usenixsecurity21/presentation/aumayr.
  3. Barry Whitehat. Roll up token, 2018. Accessed: 2024-03-19. URL: https://github.com/barryWhiteHat/roll_up_token.
  4. Daniel Benarroch, Aurélien Nicolas, Justin Thaler, and Eran Tromer. ‘community proposal: A benchmarking framework for (zero-knowledge) proof systems. QEDIT, Tel Aviv-Yafo, Israel, Tech. Rep, 2020. Google Scholar
  5. Same Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto Sonnino, et al. Sui lutris: A blockchain combining broadcast and consensus. CoRR, abs/2310.18042, 2023. URL: https://doi.org/10.48550/arXiv.2310.18042.
  6. Anselm Busse, Jacob Eberhardt, and Stefan Tai. Evm-perf: high-precision evm performance analysis. In 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pages 1-8. IEEE, 2021. URL: https://doi.org/10.1109/ICBC51069.2021.9461058.
  7. Vitalik Buterin. The different types of zk-evms. https://vitalik.eth.limo/general/2022/08/04/zkevm.html, 2022. Accessed: 2024-03-19.
  8. Vitalik Buterin. Proof of stake: The making of Ethereum and the philosophy of blockchains. Seven Stories Press, 2022. Google Scholar
  9. Stefanos Chaliasos, Jens Ernstberger, David Theodore, David Wong, Mohammad Jahanara, and Benjamin Livshits. Sok: What don't we know? understanding security vulnerabilities in snarks. CoRR, abs/2402.15293, 2024. URL: https://doi.org/10.48550/arXiv.2402.15293.
  10. Stefanos Chaliasos, Denis Firsov, and Benjamin Livshits. Towards a formal foundation for blockchain rollups. CoRR, abs/2406.16219, 2024. URL: https://doi.org/10.48550/arXiv.2406.16219.
  11. Mikel Cortes-Goicoechea, Luca Franceschini, and Leonardo Bautista-Gomez. Resource analysis of ethereum 2.0 clients. In 2021 3rd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS), pages 1-8. IEEE, 2021. URL: https://doi.org/10.1109/BRAINS52497.2021.9569812.
  12. Ziyad Edher. evm-bench. https://github.com/ziyadedher/evm-bench, 2024. Accessed: 2024-03-19.
  13. Jens Ernstberger, Stefanos Chaliasos, George Kadianakis, Sebastian Steinhorst, Philipp Jovanovic, Arthur Gervais, Benjamin Livshits, and Michele Orrù. zk-bench: A toolset for comparative evaluation and performance benchmarking of snarks. IACR Cryptol. ePrint Arch., page 1503, 2023. URL: https://eprint.iacr.org/2023/1503.
  14. Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo-a turing-complete stark-friendly cpu architecture. IACR Cryptol. ePrint Arch., page 1063, 2021. URL: https://eprint.iacr.org/2021/1063.
  15. Jan Gorzny, Lin Po-An, and Martin Derka. Ideal properties of rollup escape hatches. In Proceedings of the 3rd International Workshop on Distributed Infrastructure for the Common Good, pages 7-12, 2022. URL: https://doi.org/10.1145/3565383.3566107.
  16. Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, Chris Natoli, and Gauthier Voron. Diablo: A benchmark suite for blockchains. In Proceedings of the Eighteenth European Conference on Computer Systems, pages 540-556, 2023. URL: https://doi.org/10.1145/3552326.3567482.
  17. Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Edward W Felten. Arbitrum: Scalable, private smart contracts. In 27th USENIX Security Symposium (USENIX Security 18), pages 1353-1370, 2018. URL: https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner.
  18. Lucianna Kiffer, Asad Salman, Dave Levin, Alan Mislove, and Cristina Nita-Rotaru. Under the hood of the ethereum gossip protocol. In Financial Cryptography and Data Security: 25th International Conference, FC 2021, Virtual Event, March 1-5, 2021, Revised Selected Papers, Part II 25, pages 437-456. Springer, 2021. URL: https://doi.org/10.1007/978-3-662-64331-0_23.
  19. Adrian Koegl, Zeeshan Meghji, Donato Pellegrino, Jan Gorzny, and Martin Derka. Attacks on rollups. In Proceedings of the 4th International Workshop on Distributed Infrastructure for the Common Good, pages 25-30, 2023. URL: https://doi.org/10.1145/3631310.3633493.
  20. Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivatsan Ravi. Concurrency and privacy with payment-channel networks. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, pages 455-471, 2017. URL: https://doi.org/10.1145/3133956.3134096.
  21. MatterLabs. Boojum. https://github.com/matter-labs/era-boojum, 2022. Accessed: 2024-03-19.
  22. Shashank Motepalli, Luciano Freitas, and Benjamin Livshits. Sok: Decentralized sequencers for rollups. CoRR, abs/2310.03616, 2023. URL: https://doi.org/10.48550/arXiv.2310.03616.
  23. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Bitcoin.org, 2008. Google Scholar
  24. Bulat Nasrulin, Martijn De Vos, Georgy Ishmaev, and Johan Pouwelse. Gromit: Benchmarking the performance and scalability of blockchain systems. CoRR, abs/2208.11254:56-63, 2022. URL: https://doi.org/10.48550/arXiv.2208.11254.
  25. noir contributors. noir zksnark language, 2022. URL: https://aztec.network/aztec-nr/.
  26. Paradigm. Flood. https://www.paradigm.xyz/2023/06/flood, 2023. Accessed: 2024-03-19.
  27. Daniel Perez and Benjamin Livshits. Broken metre: Attacking resource metering in EVM. CoRR, abs/1909.07220, 2019. URL: https://doi.org/10.48550/arXiv.1909.07220.
  28. Polygon. Pil. https://docs.polygon.technology/zkEVM/spec/pil/, 2022. Accessed: 2024-03-19.
  29. Polygon. zkasm. https://docs.polygon.technology/zkEVM/spec/zkasm/, 2022. Accessed: 2024-03-19.
  30. Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts. White paper, pages 1-47, 2017. Google Scholar
  31. RISC-Zero. Risc zero vm. https://github.com/risc0/risc0, 2022. Accessed: 2024-03-19.
  32. RISC-Zero. Zeth. https://www.risczero.com/blog/zeth-release, 2022. Accessed: 2024-03-19.
  33. Scroll. halo2 kzg. https://github.com/scroll-tech/halo2, 2022. Accessed: 2024-03-19.
  34. Cosimo Sguanci, Roberto Spatafora, and Andrea Mario Vergani. Layer 2 blockchain scaling: A survey. CoRR, abs/2107.10881, 2021. URL: https://doi.org/10.48550/arXiv.2107.10881.
  35. Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A 2 l: Anonymous atomic locks for scalability in payment channel hubs. In 2021 IEEE Symposium on Security and Privacy (SP), pages 1834-1851. IEEE, 2021. URL: https://doi.org/10.1109/SP40001.2021.00111.
  36. Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid. Blockchain scaling using rollups: A comprehensive survey. IEEE Access, 10:93039-93054, 2022. URL: https://doi.org/10.1109/ACCESS.2022.3200051.
  37. Wenhao Wang, Lulu Zhou, Aviv Yaish, Fan Zhang, Ben Fisch, and Benjamin Livshits. Mechanism design for zk-rollup prover markets. CoRR, abs/2404.06495, 2024. URL: https://doi.org/10.48550/arXiv.2404.06495.
  38. Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151(2014):1-32, 2014. Google Scholar
  39. Anatoly Yakovenko. Solana: A new architecture for a high performance blockchain v0. 8.13. Whitepaper, 2018. Google Scholar
  40. Yixuan Zhang, Shuyu Zheng, Haoyu Wang, Lei Wu, Gang Huang, and Xuanzhe Liu. VM matters: A comparison of WASM vms and evms in the performance of blockchain smart contracts. ACM Trans. Model. Perform. Evaluation Comput. Syst., 9(2):5:1-5:24, 2024. URL: https://doi.org/10.1145/3641103.
  41. Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian. Solutions to scalability of blockchain: A survey. Ieee Access, 8:16440-16455, 2020. URL: https://doi.org/10.1109/ACCESS.2020.2967218.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail