We prove logarithmic upper bounds for the diameters of the random-surfer Webgraph model and the PageRank-based selection Webgraph model, confirming the small-world phenomenon holds for them. In the special case when the generated graph is a tree, we get close lower and upper bounds for the diameters of both models.
@InProceedings{mehrabian_et_al:LIPIcs.APPROX-RANDOM.2014.857, author = {Mehrabian, Abbas and Wormald, Nick}, title = {{It’s a Small World for Random Surfers}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)}, pages = {857--871}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-74-3}, ISSN = {1868-8969}, year = {2014}, volume = {28}, editor = {Jansen, Klaus and Rolim, Jos\'{e} and Devanur, Nikhil R. and Moore, Cristopher}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2014.857}, URN = {urn:nbn:de:0030-drops-47437}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2014.857}, annote = {Keywords: random-surfer webgraph model, PageRank-based selection model, smallworld phenomenon, height of random trees, probabilistic analysis, large deviations} }
Feedback for Dagstuhl Publishing