Document Open Access Logo

Tight Bounds for Graph Problems in Insertion Streams

Authors Xiaoming Sun, David P. Woodruff

Thumbnail PDF


  • Filesize: 474 kB
  • 14 pages

Document Identifiers

Author Details

Xiaoming Sun
David P. Woodruff

Cite AsGet BibTex

Xiaoming Sun and David P. Woodruff. Tight Bounds for Graph Problems in Insertion Streams. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 435-448, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)


Despite the large amount of work on solving graph problems in the data stream model, there do not exist tight space bounds for almost any of them, even in a stream with only edge insertions. For example, for testing connectivity, the upper bound is O(n * log(n)) bits, while the lower bound is only Omega(n) bits. We remedy this situation by providing the first tight Omega(n * log(n)) space lower bounds for randomized algorithms which succeed with constant probability in a stream of edge insertions for a number of graph problems. Our lower bounds apply to testing bipartiteness, connectivity, cycle-freeness, whether a graph is Eulerian, planarity, H-minor freeness, finding a minimum spanning tree of a connected graph, and testing if the diameter of a sparse graph is constant. We also give the first Omega(n * k * log(n)) space lower bounds for deterministic algorithms for k-edge connectivity and k-vertex connectivity; these are optimal in light of known deterministic upper bounds (for k-vertex connectivity we also need to allow edge duplications, which known upper bounds allow). Finally, we give an Omega(n * log^2(n)) lower bound for randomized algorithms approximating the minimum cut up to a constant factor with constant probability in a graph with integer weights between 1 and n, presented as a stream of insertions and deletions to its edges. This lower bound also holds for cut sparsifiers, and gives the first separation of maintaining a sparsifier in the data stream model versus the offline model.
  • communication complexity
  • data streams
  • graphs
  • space complexity


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail