Document

# How Long Can Optimal Locally Repairable Codes Be?

## File

LIPIcs.APPROX-RANDOM.2018.41.pdf
• Filesize: 494 kB
• 11 pages

## Cite As

Venkatesan Guruswami, Chaoping Xing, and Chen Yuan. How Long Can Optimal Locally Repairable Codes Be?. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 41:1-41:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.41

## Abstract

A locally repairable code (LRC) with locality r allows for the recovery of any erased codeword symbol using only r other codeword symbols. A Singleton-type bound dictates the best possible trade-off between the dimension and distance of LRCs - an LRC attaining this trade-off is deemed optimal. Such optimal LRCs have been constructed over alphabets growing linearly in the block length. Unlike the classical Singleton bound, however, it was not known if such a linear growth in the alphabet size is necessary, or for that matter even if the alphabet needs to grow at all with the block length. Indeed, for small code distances 3,4, arbitrarily long optimal LRCs were known over fixed alphabets. Here, we prove that for distances d >=slant 5, the code length n of an optimal LRC over an alphabet of size q must be at most roughly O(d q^3). For the case d=5, our upper bound is O(q^2). We complement these bounds by showing the existence of optimal LRCs of length Omega_{d,r}(q^{1+1/floor[(d-3)/2]}) when d <=slant r+2. Our bounds match when d=5, pinning down n=Theta(q^2) as the asymptotically largest length of an optimal LRC for this case.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Error-correcting codes
##### Keywords
• Locally Repairable Code
• Singleton Bound

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. S. Ball. On large subsets of a finite vector space in which every subset of basis size is a basis. J. Eur, 14:733-748, October 2012.
2. A. Barg, K. Haymaker, E. Howe, G. Matthews, and A. V́arilly-Alvarado. Locally recoverable codes from algebraic curves and surfaces. In E. W. Howe, K. E. Lauter, and J. L. Walker, editors, Algebraic Geometry for Coding Theory and Cryptography, pages 95-126. s, Springer, 2017.
3. A. Barg, I. Tamo, and S. Vlăduţ. Locally recoverable codes on algebraic curves. IEEE Trans. Inform.Theory, 63:4928-4939, 2017.
4. V. Cadambe and A. Mazumda. Bounds on the size of locally recoverable codes. IEEE Trans. Inform.Theory, 61:5787-5794, 2015.
5. M. Forbes and S. Yekhanin. On the locality of codeword symbols in non-linear codes. Discrete Mathematics, 324(6):78-84, 2014.
6. P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the locality of codeword symbols. IEEE Trans. Inform.Theory, 58:6925-6934, 2012.
7. S. Gopi, V. Guruswami, and S. Yekhanin. On maximally recoverable local reconstruction codes. Electronic Colloquium on Computational Complexity, 24::183, 2017.
8. J. Han and L. A. Lastras-Montano. Reliable memories with subline accesses. In Proc. IEEE Internat. Sympos. Inform. Theory, pages 2531-2535, 2007.
9. C. Huang, M. Chen, and J. Li. Pyramid codes: Flexible schemes to trade space for access efficiency in reliable data storage systems. In Sixth IEEE International Symposium on Network Computing and Applications, pages 79-86, 2007.
10. C. Huang, H. Simitci, Y. Xu, Ogus A., B. Calder, P. Gopalan, J. Li, and S. Yekhanin. Erasure coding in windows azure storage. In USENIX Annual Technical Conference (ATC), pages 15-26, 2012.
11. L. Jin, L. Ma, and Xing C. Construction of optimal locally repairable codes via automorphism groups of rational function fields. URL: https://arxiv.org/abs/1710.09638.
12. O. Kolosov, A. Barg, I. Tamo, and G. Yadgar. Optimal lrc codes for all lengths n ⩽ q. URL: https://arxiv.org/pdf/1802.00157.
13. X. Li, L. Ma, and C. Xing. Optimal locally repairable codes via elliptic curves. To appear in IEEE Trans. Inf. Theory, 2017. URL: https://arxiv.org/abs/1712.03744.
14. Y. Luo, C. Xing, and C. Yuan. Optimal locally repairable codes of distance 3 and 4 via cyclic codes. To appear in IEEE Trans. Inf. Theory, 2018. URL: http://arxiv.org/abs/1801.03623.
15. D. S. Papailiopoulos and A. G. Dimakis. Locally repairable codes. IEEE Trans. Inform.Theory, 60:5843-5855, 2014.
16. N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar. Optimal linear codes with a local-error-correction property. In Proc. 2012 IEEE Int. Symp. Inform. Theory, pages 2776-2780, 2012.
17. M. Sathiamoorthy, M. Asteris, D. S. Papailiopoulos, A. G. Dimakis, R. Vadali, S. Chen, and D. Borthakur. XORing elephants: novel erasure codes for big data. Proceedings of VLDB Endowment (PVLDB), pages 325-336, 2013.
18. N. Silberstein, A. S. Rawat, O. O. Koyluoglu, and S. Vichwanath. Optimal locally repairable codes via rank-matric codes. In Proc. IEEE Int. Symp. Inf. Theory, pages 1819-1823, 2013.
19. I. Tamo and A. Barg. A family of optimal locally recoverable codes. IEEE Trans. Inform.Theory, 60:4661-4676, 2014.
20. I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis. Optimal locally repairable codes and connections to matroid theory. IEEE Trans. Inform.Theory, 62:6661-6671, 2016.
21. Z. Zhang, J. Xu, and M. Liu. Constructions of optimal locally repairable codes over small fields. SCIENTIA SINICA Mathematica, 47(11):1607-1614, 2017.