In the matroid center problem, which generalizes the k-center problem, we need to pick a set of centers that is an independent set of a matroid with rank r. We study this problem in streaming, where elements of the ground set arrive in the stream. We first show that any randomized one-pass streaming algorithm that computes a better than Delta-approximation for partition-matroid center must use Omega(r^2) bits of space, where Delta is the aspect ratio of the metric and can be arbitrarily large. This shows a quadratic separation between matroid center and k-center, for which the Doubling algorithm [Charikar et al., 1997] gives an 8-approximation using O(k)-space and one pass. To complement this, we give a one-pass algorithm for matroid center that stores at most O(r^2 log(1/epsilon)/epsilon) points (viz., stream summary) among which a (7+epsilon)-approximate solution exists, which can be found by brute force, or a (17+epsilon)-approximation can be found with an efficient algorithm. If we are allowed a second pass, we can compute a (3+epsilon)-approximation efficiently. We also consider the problem of matroid center with z outliers and give a one-pass algorithm that outputs a set of O((r^2+rz)log(1/epsilon)/epsilon) points that contains a (15+epsilon)-approximate solution. Our techniques extend to knapsack center and knapsack center with z outliers in a straightforward way, and we get algorithms that use space linear in the size of a largest feasible set (as opposed to quadratic space for matroid center).
@InProceedings{kale:LIPIcs.APPROX-RANDOM.2019.20, author = {Kale, Sagar}, title = {{Small Space Stream Summary for Matroid Center}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)}, pages = {20:1--20:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-125-2}, ISSN = {1868-8969}, year = {2019}, volume = {145}, editor = {Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.20}, URN = {urn:nbn:de:0030-drops-112359}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2019.20}, annote = {Keywords: Streaming Algorithms, Matroids, Clustering} }
Feedback for Dagstuhl Publishing