Approximating the Number of Relevant Variables in a Parity Implies Proper Learning

Authors Nader H. Bshouty , George Haddad



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2024.38.pdf
  • Filesize: 0.73 MB
  • 15 pages

Document Identifiers

Author Details

Nader H. Bshouty
  • Department of Computer Science, Technion, Israel
George Haddad
  • Department of Computer Science, Technion, Israel

Acknowledgements

We would like to thank the anonymous reviewer of RANDOM for providing another approach for finding the relevant variables in the target function. We also extend our gratitude to the other reviewers for their useful comments and suggestions, which have greatly improved this manuscript.

Cite AsGet BibTex

Nader H. Bshouty and George Haddad. Approximating the Number of Relevant Variables in a Parity Implies Proper Learning. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 38:1-38:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.38

Abstract

Consider the model where we can access a parity function through random uniform labeled examples in the presence of random classification noise. In this paper, we show that approximating the number of relevant variables in the parity function is as hard as properly learning parities. More specifically, let γ:ℝ^+ → ℝ^+, where γ(x) ≥ x, be any strictly increasing function. In our first result, we show that from any polynomial-time algorithm that returns a γ-approximation, D (i.e., γ^{-1}(d(f)) ≤ D ≤ γ(d(f))), of the number of relevant variables d(f) for any parity f, we can, in polynomial time, construct a solution to the long-standing open problem of polynomial-time learning k(n)-sparse parities (parities with k(n) ≤ n relevant variables), where k(n) = ω_n(1). In our second result, we show that from any T(n)-time algorithm that, for any parity f, returns a γ-approximation of the number of relevant variables d(f) of f, we can, in polynomial time, construct a poly(Γ(n))T(Γ(n)²)-time algorithm that properly learns parities, where Γ(x) = γ(γ(x)). If T(Γ(n)²) = exp({o(n/log n)}), this would resolve another long-standing open problem of properly learning parities in the presence of random classification noise in time exp(o(n/log n)).

Subject Classification

ACM Subject Classification
  • Theory of computation
Keywords
  • PAC Learning
  • Random Classification Noise
  • Uniform Distribution
  • Parity
  • Sparcity Approximation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Dana Angluin and Philip D. Laird. Learning from noisy examples. Mach. Learn., 2(4):343-370, 1987. URL: https://doi.org/10.1007/BF00116829.
  2. Per Austrin and Subhash Khot. A simple deterministic reduction for the gap minimum distance of code problem. IEEE Trans. Inf. Theory, 60(10):6636-6645, 2014. URL: https://doi.org/10.1109/TIT.2014.2340869.
  3. Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Karthik C. S., Bingkai Lin, Pasin Manurangsi, and Dániel Marx. Parameterized intractability of even set and shortest vector problem. J. ACM, 68(3):16:1-16:40, 2021. URL: https://doi.org/10.1145/3444942.
  4. Arnab Bhattacharyya, Ameet Gadekar, Suprovat Ghoshal, and Rishi Saket. On the hardness of learning sparse parities. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 11:1-11:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPICS.ESA.2016.11.
  5. Arnab Bhattacharyya, Ameet Gadekar, and Ninad Rajgopal. On learning k-parities with and without noise. CoRR, abs/1502.05375, 2015. URL: https://arxiv.org/abs/1502.05375.
  6. Arnab Bhattacharyya, Ameet Gadekar, and Ninad Rajgopal. Improved learning of k-parities. Theor. Comput. Sci., 840:249-256, 2020. URL: https://doi.org/10.1016/J.TCS.2020.08.025.
  7. Arnab Bhattacharyya, Piotr Indyk, David P. Woodruff, and Ning Xie. The complexity of linear dependence problems in vector spaces. In Bernard Chazelle, editor, Innovations in Computer Science - ICS 2011, Tsinghua University, Beijing, China, January 7-9, 2011. Proceedings, pages 496-508. Tsinghua University Press, 2011. URL: http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/33.html.
  8. Avrim Blum. On-line algorithms in machine learning. In Amos Fiat and Gerhard J. Woeginger, editors, Online Algorithms, The State of the Art (the book grow out of a Dagstuhl Seminar, June 1996), volume 1442 of Lecture Notes in Computer Science, pages 306-325. Springer, 1996. URL: https://doi.org/10.1007/BFB0029575.
  9. Avrim Blum, Merrick L. Furst, Jeffrey C. Jackson, Michael J. Kearns, Yishay Mansour, and Steven Rudich. Weakly learning DNF and characterizing statistical query learning using fourier analysis. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 253-262, 1994. URL: https://doi.org/10.1145/195058.195147.
  10. Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic primitives based on hard learning problems. In Douglas R. Stinson, editor, Advances in Cryptology - CRYPTO '93, 13th Annual International Cryptology Conference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings, volume 773 of Lecture Notes in Computer Science, pages 278-291. Springer, 1993. URL: https://doi.org/10.1007/3-540-48329-2_24.
  11. Avrim Blum, Lisa Hellerstein, and Nick Littlestone. Learning in the presence of finitely or infinitely many irrelevant attributes. J. Comput. Syst. Sci., 50(1):32-40, 1995. URL: https://doi.org/10.1006/JCSS.1995.1004.
  12. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM, 50(4):506-519, 2003. URL: https://doi.org/10.1145/792538.792543.
  13. Nader H. Bshouty. Exact learning from an honest teacher that answers membership queries. Theor. Comput. Sci., 733:4-43, 2018. URL: https://doi.org/10.1016/J.TCS.2018.04.034.
  14. Nader H. Bshouty and Lisa Hellerstein. Attribute-efficient learning in query and mistake-bound models. J. Comput. Syst. Sci., 56(3):310-319, 1998. URL: https://doi.org/10.1006/JCSS.1998.1571.
  15. Harry Buhrman, David García-Soriano, and Arie Matsliah. Learning parities in the mistake-bound model. Inf. Process. Lett., 111(1):16-21, 2010. URL: https://doi.org/10.1016/J.IPL.2010.10.009.
  16. Qi Cheng and Daqing Wan. Complexity of decoding positive-rate primitive reed-solomon codes. IEEE Trans. Inf. Theory, 56(10):5217-5222, 2010. URL: https://doi.org/10.1109/TIT.2010.2060234.
  17. Qi Cheng and Daqing Wan. A deterministic reduction for the gap minimum distance problem. IEEE Trans. Inf. Theory, 58(11):6935-6941, 2012. URL: https://doi.org/10.1109/TIT.2012.2209198.
  18. Rodney G. Downey, Michael R. Fellows, Alexander Vardy, and Geoff Whittle. The parametrized complexity of some fundamental problems in coding theory. SIAM J. Comput., 29(2):545-570, 1999. URL: https://doi.org/10.1137/S0097539797323571.
  19. Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating the minimum distance of a linear code. IEEE Trans. Inf. Theory, 49(1):22-37, 2003. URL: https://doi.org/10.1109/TIT.2002.806118.
  20. Vitaly Feldman. Attribute-efficient and non-adaptive learning of parities and DNF expressions. J. Mach. Learn. Res., 8:1431-1460, 2007. URL: https://doi.org/10.5555/1314498.1314547.
  21. Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. On agnostic learning of parities, monomials, and halfspaces. SIAM J. Comput., 39(2):606-645, 2009. URL: https://doi.org/10.1137/070684914.
  22. Elena Grigorescu, Lev Reyzin, and Santosh S. Vempala. On noise-tolerant learning of sparse parities and related problems. In Jyrki Kivinen, Csaba Szepesvári, Esko Ukkonen, and Thomas Zeugmann, editors, Algorithmic Learning Theory - 22nd International Conference, ALT 2011, Espoo, Finland, October 5-7, 2011. Proceedings, volume 6925 of Lecture Notes in Computer Science, pages 413-424. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-24412-4_32.
  23. David Guijarro, Víctor Lavín, and Vijay Raghavan. Exact learning when irrelevant variables abound. Inf. Process. Lett., 70(5):233-239, 1999. URL: https://doi.org/10.1016/S0020-0190(99)00063-0.
  24. David Guijarro, Jun Tarui, and Tatsuie Tsukiji. Finding relevant variables in PAC model with membership queries. In Osamu Watanabe and Takashi Yokomori, editors, Algorithmic Learning Theory, 10th International Conference, ALT '99, Tokyo, Japan, December 6-8, 1999, Proceedings, volume 1720 of Lecture Notes in Computer Science, page 313. Springer, 1999. URL: https://doi.org/10.1007/3-540-46769-6_26.
  25. Thomas Hofmeister. An application of codes to attribute-efficient learning. In Paul Fischer and Hans Ulrich Simon, editors, Computational Learning Theory, 4th European Conference, EuroCOLT '99, Nordkirchen, Germany, March 29-31, 1999, Proceedings, volume 1572 of Lecture Notes in Computer Science, pages 101-110. Springer, 1999. URL: https://doi.org/10.1007/3-540-49097-3_9.
  26. Adam Tauman Kalai, Yishay Mansour, and Elad Verbin. On agnostic boosting and parity learning. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 629-638. ACM, 2008. URL: https://doi.org/10.1145/1374376.1374466.
  27. Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983-1006, 1998. URL: https://doi.org/10.1145/293347.293351.
  28. Adam R. Klivans and Rocco A. Servedio. Toward attribute efficient learning of decision lists and parities. In John Shawe-Taylor and Yoram Singer, editors, Learning Theory, 17th Annual Conference on Learning Theory, COLT 2004, Banff, Canada, July 1-4, 2004, Proceedings, volume 3120 of Lecture Notes in Computer Science, pages 224-238. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-27819-1_16.
  29. Vadim Lyubashevsky. The parity problem in the presence of noise, decoding random linear codes, and the subset sum problem. In Approximation, Randomization and Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005, Proceedings, pages 378-389, 2005. URL: https://doi.org/10.1007/11538462_32.
  30. Daniele Micciancio. Locally dense codes. In IEEE 29th Conference on Computational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages 90-97. IEEE Computer Society, 2014. URL: https://doi.org/10.1109/CCC.2014.17.
  31. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. CoRR, abs/2401.03703, 2024. URL: https://doi.org/10.48550/arXiv.2401.03703.
  32. Ryuhei Uehara, Kensei Tsuchida, and Ingo Wegener. Optimal attribute-efficient learning of disjunction, parity and threshold functions. In Shai Ben-David, editor, Computational Learning Theory, Third European Conference, EuroCOLT '97, Jerusalem, Israel, March 17-19, 1997, Proceedings, volume 1208 of Lecture Notes in Computer Science, pages 171-184. Springer, 1997. URL: https://doi.org/10.1007/3-540-62685-9_15.
  33. Gregory Valiant. Finding correlations in subquadratic time, with applications to learning parities and the closest pair problem. J. ACM, 62(2):13:1-13:45, 2015. URL: https://doi.org/10.1145/2728167.
  34. Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134-1142, 1984. URL: https://doi.org/10.1145/1968.1972.
  35. Alexander Vardy. The intractability of computing the minimum distance of a code. IEEE Trans. Inf. Theory, 43(6):1757-1766, 1997. URL: https://doi.org/10.1109/18.641542.
  36. Di Yan, Yu Yu, Hanlin Liu, Shuoyao Zhao, and Jiang Zhang. An improved algorithm for learning sparse parities in the presence of noise. Theor. Comput. Sci., 873:76-86, 2021. URL: https://doi.org/10.1016/J.TCS.2021.04.026.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail