Optimal Pseudorandom Generators for Low-Degree Polynomials over Moderately Large Fields

Authors Ashish Dwivedi , Zeyu Guo , Ben Lee Volk



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2024.44.pdf
  • Filesize: 0.84 MB
  • 19 pages

Document Identifiers

Author Details

Ashish Dwivedi
  • Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
Zeyu Guo
  • Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
Ben Lee Volk
  • Efi Arazi School of Computer Science, Reichman University, Israel

Acknowledgements

We thank Jesse Goodman and Pooya Hatami for helpful discussions. Part of this work was carried out while the first two authors were visiting the Simons Institute for the Theory of Computing at UC Berkeley. We thank the institute for its support and hospitality.

Cite AsGet BibTex

Ashish Dwivedi, Zeyu Guo, and Ben Lee Volk. Optimal Pseudorandom Generators for Low-Degree Polynomials over Moderately Large Fields. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 44:1-44:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.44

Abstract

We construct explicit pseudorandom generators that fool n-variate polynomials of degree at most d over a finite field 𝔽_q. The seed length of our generators is O(d log n + log q), over fields of size exponential in d and characteristic at least d(d-1)+1. Previous constructions such as Bogdanov’s (STOC 2005) and Derksen and Viola’s (FOCS 2022) had either suboptimal seed length or required the field size to depend on n. Our approach follows Bogdanov’s paradigm while incorporating techniques from Lecerf’s factorization algorithm (J. Symb. Comput. 2007) and insights from the construction of Derksen and Viola regarding the role of indecomposability of polynomials.

Subject Classification

ACM Subject Classification
  • Theory of computation → Pseudorandomness and derandomization
Keywords
  • Pseudorandom Generators
  • Low Degree Polynomials

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noga Alon, Ido Ben-Eliezer, and Michael Krivelevich. Small sample spaces cannot fool low degree polynomials. In Proceedings of the 12th International Workshop on Randomization and Computation (RANDOM 2008), volume 5171 of Lecture Notes in Computer Science, pages 266-275. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-85363-3_22.
  2. Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction of almost k-wise independent random variables. Random Structures & Algorithms, 3(3):289-304, 1992. URL: https://doi.org/10.1002/RSA.3240030308.
  3. I. V. Arzhantsev and A. P. Petravchuk. Closed polynomials and saturated subalgebras of polynomial algebras. Ukrainian Mathematical Journal, 59(12):1783-1790, 2007. Google Scholar
  4. Avraham Ben-Aroya and Amnon Ta-Shma. Constructing small-bias sets from algebraic-geometric codes. Theory of Computing, 9:253-272, 2013. URL: https://doi.org/10.4086/TOC.2013.V009A005.
  5. Arnaud Bodin, Pierre Debes, and Salah Najib. Indecomposable polynomials and their spectrum. Acta Arithmetica, 139(1):79-100, 2009. Google Scholar
  6. Andrej Bogdanov. Pseudorandom generators for low degree polynomials. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 21-30. ACM, 2005. URL: https://doi.org/10.1145/1060590.1060594.
  7. Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. SIAM Journal on Computing, 39(6):2464-2486, 2010. URL: https://doi.org/10.1137/070712109.
  8. A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt. Complexity issues in bivariate polynomial factorization. In Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC 2004, pages 42-49. Association for Computing Machinery, 2004. Google Scholar
  9. Guillaume Cheze and Salah Najib. Indecomposability of polynomials via Jacobian matrix. Journal of Algebra, 324(1):1-11, 2010. Google Scholar
  10. Gil Cohen and Amnon Ta-Shma. Pseudorandom generators for low degree polynomials from algebraic geometry codes. Electronic Colloquium on Computational Complexity, TR13-155, 2013. URL: https://arxiv.org/abs/TR13-155.
  11. David A. Cox, John B. Little, and Donal O'Shea. Ideals, Varieties and Algorithms. Undergraduate Texts in Mathematics. Springer, 2007. URL: https://doi.org/10.1007/978-0-387-35651-8.
  12. Harm Derksen and Emanuele Viola. Fooling polynomials using invariant theory. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 399-406. IEEE, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00045.
  13. David Eisenbud. Commutative Algebra: With a View Toward Algebraic Geometry. Springer Science & Business Media, 1995. Google Scholar
  14. Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Velickovic. Efficient approximation of product distributions. Random Structures & Algorithms, 13(1):1-16, 1998. URL: https://doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W.
  15. Shuhong Gao. Factoring multivariate polynomials via partial differential equations. Mathematics of Computation, 72(242):801-822, 2003. URL: https://doi.org/10.1090/S0025-5718-02-01428-X.
  16. Venkatesan Guruswami and Chaoping Xing. Hitting sets for low-degree polynomials with optimal density. In Proceedings of the IEEE 29th Conference on Computational Complexity, CCC 2014, pages 161-168. IEEE Computer Society, 2014. URL: https://doi.org/10.1109/CCC.2014.24.
  17. Pooya Hatami and William Hoza. Theory of unconditional pseudorandom generators. Electronic Colloquium on Computational Complexity, TR23-019, 2023. URL: https://arxiv.org/abs/TR23-019.
  18. Erich L. Kaltofen. Effective Noether irreducibility forms and applications. Journal of Computer and System Sciences, 50(2):274-295, 1995. URL: https://doi.org/10.1006/JCSS.1995.1023.
  19. Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate polynomials. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing (STOC 2001), pages 216-223. ACM, 2001. URL: https://doi.org/10.1145/380752.380801.
  20. Grégoire Lecerf. Sharp precision in Hensel lifting for bivariate polynomial factorization. Mathematics of Computation, 75(254):921-933, 2006. Google Scholar
  21. Grégoire Lecerf. Improved dense multivariate polynomial factorization algorithms. Journal of Symbolic Computation, 42(4):477-494, 2007. Google Scholar
  22. Shachar Lovett. Unconditional pseudorandom generators for low degree polynomials. Theory of Computing, 5(1):69-82, 2009. URL: https://doi.org/10.4086/TOC.2009.V005A003.
  23. Chi-Jen Lu. Hitting set generators for sparse polynomials over any finite fields. In Proceedings of the 27th Conference on Computational Complexity, CCC 2012, pages 280-286. IEEE Computer Society, 2012. URL: https://doi.org/10.1109/CCC.2012.20.
  24. Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applications. SIAM Journal on Computing, 22(4):838-856, 1993. URL: https://doi.org/10.1137/0222053.
  25. Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete basis with logical addition. Matematicheskie Zametki, 41:598-607, 1987. English translation in Mathematical Notes of the Academy of Sci. of the USSR, 41(4):333-338, 1987. URL: https://doi.org/10.1007/BF01137685.
  26. Wolfgang Ruppert. Reduzibilität ebener kurven. Journal für die reine und angewandte Mathematik, 1986(369):167-191, 1986. URL: https://doi.org/doi:10.1515/crll.1986.369.167.
  27. Wolfgang M. Ruppert. Reducibility of polynomials f(x,y) modulo p. Journal of Number Theory, 77(1):62-70, 1999. URL: https://doi.org/10.1006/jnth.1999.2381.
  28. Nitin Saxena. Progress on polynomial identity testing. Bulletin of the EATCS, 99:49-79, 2009. Google Scholar
  29. Nitin Saxena. Progress on polynomial identity testing-II. Perspectives in Computational Complexity: The Somenath Biswas Anniversary Volume, pages 131-146, 2014. URL: https://doi.org/10.1007/978-3-319-05446-9_7.
  30. Igor Shafarevich. Basic Algebraic Geometry 1: Varieties in Projective Space. Springer, 1994. Google Scholar
  31. Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207-388, 2010. URL: https://doi.org/10.1561/0400000039.
  32. Roman Smolensky. On representations by low-degree polynomials. In 34th Annual Symposium on Foundations of Computer Science, pages 130-138. IEEE Computer Society, 1993. URL: https://doi.org/10.1109/SFCS.1993.366874.
  33. Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017), pages 238-251. ACM, 2017. URL: https://doi.org/10.1145/3055399.3055408.
  34. Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science, 7(1-3):1-336, 2012. URL: https://doi.org/10.1561/0400000010.
  35. Emanuele Viola. The sum of D small-bias generators fools polynomials of degree D. computational complexity, 18(2):209-217, 2009. URL: https://doi.org/10.1007/S00037-009-0273-5.
  36. André Weil. Numbers of solutions of equations in finite fields. Bulletin of the American Mathematical Society, 55:497-508, 1949. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail