Bipartizing (Pseudo-)Disk Graphs: Approximation with a Ratio Better than 3

Authors Daniel Lokshtanov , Fahad Panolan , Saket Saurabh , Jie Xue , Meirav Zehavi



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2024.6.pdf
  • Filesize: 0.81 MB
  • 14 pages

Document Identifiers

Author Details

Daniel Lokshtanov
  • University of California, Santa Barbara, USA
Fahad Panolan
  • University of Leeds, UK
Saket Saurabh
  • Institute of Mathematical Sciences, India
Jie Xue
  • New York University Shanghai, China
Meirav Zehavi
  • Ben-Gurion University, Israel

Cite AsGet BibTex

Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. Bipartizing (Pseudo-)Disk Graphs: Approximation with a Ratio Better than 3. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.6

Abstract

In a disk graph, every vertex corresponds to a disk in ℝ² and two vertices are connected by an edge whenever the two corresponding disks intersect. Disk graphs form an important class of geometric intersection graphs, which generalizes both planar graphs and unit-disk graphs. We study a fundamental optimization problem in algorithmic graph theory, Bipartization (also known as Odd Cycle Transversal), on the class of disk graphs. The goal of Bipartization is to delete a minimum number of vertices from the input graph such that the resulting graph is bipartite. A folklore (polynomial-time) 3-approximation algorithm for Bipartization on disk graphs follows from the classical framework of Goemans and Williamson [Combinatorica'98] for cycle-hitting problems. For over two decades, this result has remained the best known approximation for the problem (in fact, even for Bipartization on unit-disk graphs). In this paper, we achieve the first improvement upon this result, by giving a (3-α)-approximation algorithm for Bipartization on disk graphs, for some constant α > 0. Our algorithm directly generalizes to the broader class of pseudo-disk graphs. Furthermore, our algorithm is robust in the sense that it does not require a geometric realization of the input graph to be given.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • bipartization
  • geometric intersection graphs
  • approximation algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(√log n) approximation algorithms for min uncut, min 2cnf deletion, and directed cut problems. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 573-581. ACM, 2005. URL: https://doi.org/10.1145/1060590.1060675.
  2. Sayan Bandyapadhyay, William Lochet, Daniel Lokshtanov, Saket Saurabh, and Jie Xue. Subexponential parameterized algorithms for cut and cycle hitting problems on h-minor-free graphs. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2063-2084. SIAM, 2022. Google Scholar
  3. Sayan Bandyapadhyay, William Lochet, Daniel Lokshtanov, Saket Saurabh, and Jie Xue. True contraction decomposition and almost ETH-tight bipartization for unit-disk graphs. In 38th International Symposium on Computational Geometry (SoCG 2022). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  4. Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 453-462. IEEE, 2009. Google Scholar
  5. Marthe Bonamy, Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Panos Giannopoulos, Eun Jung Kim, Pawel Rzazewski, Florian Sikora, and Stéphan Thomassé. EPTAS and subexponential algorithm for maximum clique on disk and unit ball graphs. J. ACM, 68(2):9:1-9:38, 2021. URL: https://doi.org/10.1145/3433160.
  6. Hyeong-Ah Choi, Kazuo Nakajima, and Chong S. Rim. Graph bipartization and via minimization. SIAM J. Discret. Math., 2(1):38-47, 1989. URL: https://doi.org/10.1137/0402004.
  7. Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der Zanden. A framework for exponential-time-hypothesis-tight algorithms and lower bounds in geometric intersection graphs. SIAM J. Comput., 49(6):1291-1331, 2020. URL: https://doi.org/10.1137/20M1320870.
  8. Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes for geometric intersection graphs. SIAM J. Comput., 34(6):1302-1323, 2005. URL: https://doi.org/10.1137/S0097539702402676.
  9. Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approximation algorithms via spreading metrics. J. ACM, 47(4):585-616, 2000. URL: https://doi.org/10.1145/347476.347478.
  10. Samuel Fiorini, Nadia Hardy, Bruce A. Reed, and Adrian Vetta. Approximate min-max relations for odd cycles in planar graphs. Math. Program., 110(1):71-91, 2007. URL: https://doi.org/10.1007/s10107-006-0063-7.
  11. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discret. Comput. Geom., 62(4):879-911, 2019. URL: https://doi.org/10.1007/s00454-018-00054-x.
  12. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. ETH-tight algorithms for long path and cycle on unit disk graphs. J. Comput. Geom., 12(2):126-148, 2021. URL: https://doi.org/10.20382/jocg.v12i2a6.
  13. Matt Gibson and Imran A. Pirwani. Algorithms for dominating set in disk graphs: Breaking the logn barrier - (extended abstract). In Mark de Berg and Ulrich Meyer, editors, Algorithms - ESA 2010, 18th Annual European Symposium, Liverpool, UK, September 6-8, 2010. Proceedings, Part I, volume 6346 of Lecture Notes in Computer Science, pages 243-254. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-15775-2_21.
  14. Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115-1145, 1995. URL: https://doi.org/10.1145/227683.227684.
  15. Michel X. Goemans and David P. Williamson. Primal-dual approximation algorithms for feedback problems in planar graphs. Comb., 18(1):37-59, 1998. URL: https://doi.org/10.1007/PL00009810.
  16. Bart MP Jansen and Stefan Kratsch. On polynomial kernels for structural parameterizations of odd cycle transversal. In International Symposium on Parameterized and Exact Computation, pages 132-144. Springer, 2011. Google Scholar
  17. Bart MP Jansen, Marcin L Pilipczuk, and Erik Jan Van Leeuwen. A deterministic polynomial kernel for odd cycle transversal and vertex multiway cut in planar graphs. SIAM Journal on Discrete Mathematics, 35(4):2387-2429, 2021. Google Scholar
  18. Andrew B. Kahng, Shailesh Vaya, and Alexander Zelikovsky. New graph bipartizations for double-exposure, bright field alternating phase-shift mask layout. In Satoshi Goto, editor, Proceedings of ASP-DAC 2001, Asia and South Pacific Design Automation Conference 2001, January 30-February 2, 2001, Yokohama, Japan, pages 133-138. ACM, 2001. URL: https://doi.org/10.1145/370155.370304.
  19. Ken-Ichi Kawarabayashi and Atsuhiro Nakamoto. The Erdős-Pósa property for vertex-and edge-disjoint odd cycles in graphs on orientable surfaces. Discrete Mathematics, 307(6):764-768, 2007. Google Scholar
  20. Ken-ichi Kawarabayashi and Bruce A. Reed. Odd cycle packing. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 695-704. ACM, 2010. URL: https://doi.org/10.1145/1806689.1806785.
  21. Klara Kedem, Ron Livne, János Pach, and Micha Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete & Computational Geometry, 1(1):59-71, 1986. Google Scholar
  22. Jan Kratochvíl. Intersection graphs of noncrossing arc-connected sets in the plane. In International Symposium on Graph Drawing, pages 257-270. Springer, 1996. Google Scholar
  23. Stefan Kratsch and Magnus Wahlström. Compression via matroids: a randomized polynomial kernel for odd cycle transversal. ACM Transactions on Algorithms (TALG), 10(4):1-15, 2014. Google Scholar
  24. Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernelization. J. ACM, 67(3):16:1-16:50, 2020. URL: https://doi.org/10.1145/3390887.
  25. Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Algorithms, 11(2):15:1-15:31, 2014. URL: https://doi.org/10.1145/2566616.
  26. Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. Subexponential parameterized algorithms on disk graphs (extended abstract). In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2005-2031. SIAM, 2022. Google Scholar
  27. Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. A 1.9999-approximation algorithm for vertex cover on string graphs. In 40th International Symposium on Computational Geometry (SoCG 2024). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. Google Scholar
  28. Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavik. A framework for approximation schemes on disk graphs. In 34rd Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2023. Google Scholar
  29. Daniel Lokshtanov, Saket Saurabh, and Magnus Wahlström. Subexponential parameterized odd cycle transversal on planar graphs. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. Google Scholar
  30. Madhav V. Marathe, Heinz Breu, Harry B. Hunt, S. S. Ravi, and Daniel J. Rosenkrantz. Simple heuristics for unit disk graphs. Networks, 25:59-68, 1995. Google Scholar
  31. Dániel Marx, Pranabendu Misra, Daniel Neuen, and Prafullkumar Tale. A framework for parameterized subexponential algorithms for generalized cycle hitting problems on planar graphs. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2085-2127. SIAM, 2022. Google Scholar
  32. Mihai Pop, Daniel S Kosack, and Steven L Salzberg. Hierarchical scaffolding with bambus. Genome research, 14(1):149-159, 2004. Google Scholar
  33. Dieter Rautenbach and Bruce Reed. The Erdos-Pósa property for odd cycles in highly connected graphs. Combinatorica, 21(2):267-278, 2001. Google Scholar
  34. Dieter Rautenbach and Bruce A. Reed. The Erdos-Pósa property for odd cycles in highly connected graphs. Comb., 21(2):267-278, 2001. URL: https://doi.org/10.1007/s004930100024.
  35. Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations Research Letters, 32(4):299-301, 2004. Google Scholar
  36. Bruce A. Reed. Mangoes and blueberries. Comb., 19(2):267-296, 1999. URL: https://doi.org/10.1007/s004930050056.
  37. Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res. Lett., 32(4):299-301, 2004. URL: https://doi.org/10.1016/j.orl.2003.10.009.
  38. Romeo Rizzi, Vineet Bafna, Sorin Istrail, and Giuseppe Lancia. Practical algorithms and fixed-parameter tractability for the single individual SNP haplotyping problem. In Roderic Guigó and Dan Gusfield, editors, Algorithms in Bioinformatics, Second International Workshop, WABI 2002, Rome, Italy, September 17-21, 2002, Proceedings, volume 2452 of Lecture Notes in Computer Science, pages 29-43. Springer, 2002. URL: https://doi.org/10.1007/3-540-45784-4_3.
  39. Sartaj Sahni and Teofilo F. Gonzalez. P-complete approximation problems. J. ACM, 23(3):555-565, 1976. URL: https://doi.org/10.1145/321958.321975.
  40. Carsten Thomassen. The Erdős-Pósa property for odd cycles in graphs of large connectivity. Combinatorica, 21(2):321-333, 2001. Google Scholar
  41. Erik Jan van Leeuwen. Better approximation schemes for disk graphs. In Lars Arge and Rusins Freivalds, editors, Algorithm Theory - SWAT 2006, 10th ScandinavianWorkshop on Algorithm Theory, Riga, Latvia, July 6-8, 2006, Proceedings, volume 4059 of Lecture Notes in Computer Science, pages 316-327. Springer, 2006. URL: https://doi.org/10.1007/11785293_30.
  42. Sebastian Wernicke. On the algorithmic tractability of single nucleotide polymorphism (SNP) analysis and related problems. diplom. de, 2014. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail