For any constant α > 0, we construct an explicit pseudorandom generator (PRG) that fools n-variate decision trees of size m with error ε and seed length (1 + α) ⋅ log₂ m + O(log(1/ε) + log log n). For context, one can achieve seed length (2 + o(1)) ⋅ log₂ m + O(log(1/ε) + log log n) using well-known constructions and analyses of small-bias distributions, but such a seed length is trivial when m ≥ 2^{n/2}. Our approach is to develop a new variant of the classic concept of almost k-wise independence, which might be of independent interest. We say that a distribution X over {0, 1}ⁿ is k-wise ε-probably uniform if every Boolean function f that depends on only k variables satisfies 𝔼[f(X)] ≥ (1 - ε) ⋅ 𝔼[f]. We show how to sample a k-wise ε-probably uniform distribution using a seed of length (1 + α) ⋅ k + O(log(1/ε) + log log n). Meanwhile, we also show how to construct a set H ⊆ 𝔽₂ⁿ such that every feasible system of k linear equations in n variables over 𝔽₂ has a solution in H. The cardinality of H and the time complexity of enumerating H are at most 2^{k + o(k) + polylog n}, whereas small-bias distributions would give a bound of 2^{2k + O(log(n/k))}. By combining our new constructions with work by Chen and Kabanets (TCS 2016), we obtain nontrivial PRGs and hitting sets for linear-size Boolean circuits. Specifically, we get an explicit PRG with seed length (1 - Ω(1)) ⋅ n that fools circuits of size 2.99 ⋅ n over the U₂ basis, and we get a hitting set with time complexity 2^{(1 - Ω(1)) ⋅ n} for circuits of size 2.49 ⋅ n over the B₂ basis.
@InProceedings{hoza_et_al:LIPIcs.APPROX/RANDOM.2025.35, author = {Hoza, William M. and Lv, Zelin}, title = {{Fooling Near-Maximal Decision Trees}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)}, pages = {35:1--35:24}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-397-3}, ISSN = {1868-8969}, year = {2025}, volume = {353}, editor = {Ene, Alina and Chattopadhyay, Eshan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.35}, URN = {urn:nbn:de:0030-drops-244019}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2025.35}, annote = {Keywords: almost k-wise independence, decision trees, pseudorandom generators} }
Feedback for Dagstuhl Publishing