Early Typical Vertices in Subcritical Random Graphs of Preferential Attachment Type

Authors Peter Mörters , Nick Schleicher



PDF
Thumbnail PDF

File

LIPIcs.AofA.2024.14.pdf
  • Filesize: 1.12 MB
  • 10 pages

Document Identifiers

Author Details

Peter Mörters
  • University of Cologne, Germany
Nick Schleicher
  • University of Cologne, Germany

Acknowledgements

This paper contains results from the second author’s Master thesis.

Cite AsGet BibTex

Peter Mörters and Nick Schleicher. Early Typical Vertices in Subcritical Random Graphs of Preferential Attachment Type. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 14:1-14:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.AofA.2024.14

Abstract

We study the size of the connected component of early typical vertices in a subcritical inhomogeneous random graph with a kernel of preferential attachment type. The principal tools in our analysis are, first, a coupling of the neighbourhood of a typical vertex in the graph to a killed branching random walk and, second, an asymptotic result for the number of particles absorbed at the killing barrier in this branching random walk.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Random graphs
  • Mathematics of computing → Paths and connectivity problems
  • Mathematics of computing → Markov processes
Keywords
  • Inhomogeneous random graphs
  • preferential attachment
  • networks
  • subcritical behaviour
  • size of components
  • connectivity
  • coupling
  • branching random walk
  • random tree

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Elie Aïdékon, Yueyun Hu, and Olivier Zindy. The precise tail behavior of the total progeny of a killed branching random walk. The Annals of Probability, 41(6), November 2013. URL: https://doi.org/10.1214/13-aop842.
  2. Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286(5439):509-512, October 1999. URL: https://doi.org/10.1126/science.286.5439.509.
  3. John D. Biggins. Martingale convergence in the branching random walk. J. Appl. Probab., 14:25-37, 1977. URL: https://doi.org/10.2307/3213258.
  4. Béla Bollobás, Svante Janson, and Oliver Riordan. The phase transition in inhomogeneous random graphs. Random Structures and Algorithms, 31(1):3-122, June 2007. URL: https://doi.org/10.1002/rsa.20168.
  5. Steffen Dereich and Peter Mörters. Random networks with sublinear preferential attachment: The giant component. The Annals of Probability, 41(1), January 2013. URL: https://doi.org/10.1214/11-aop697.
  6. Aolan Ding and Rick Durrett. The phase transition in Chung-Lu graphs, 2023. URL: https://arxiv.org/abs/2305.08203.
  7. Svante Janson. The largest component in a subcritical random graph with a power law degree distribution. The Annals of Applied Probability, 18(4):1651-1668, 2008. URL: https://doi.org/10.1214/07-AAP490.
  8. Günter Last and Mathew Penrose. Lectures on the Poisson process, volume 7 of IMS Textb. Cambridge: Cambridge University Press, 2018. URL: https://doi.org/10.1017/9781316104477.
  9. Quansheng Liu. On generalized multiplicative cascades. Stochastic Processes and their Applications, 86(2):263-286, 2000. URL: https://doi.org/10.1016/S0304-4149(99)00097-6.
  10. Russell Lyons. A simple path to Biggins' martingale convergence for branching random walk, 1998. URL: https://arxiv.org/abs/math/9803100.
  11. Peter Mörters. Tangent graphs. Pure and Applied Functional Analysis, 8, 2023. URL: http://yokohamapublishers.jp/online2/oppafa/vol8/p1767.html.
  12. Olle Nerman. On the convergence of supercritical general (C-M-J) branching processes. Z. Wahrscheinlichkeitstheor. Verw. Geb., 57:365-395, 1981. URL: https://doi.org/10.1007/BF00534830.