LIPIcs.AofA.2024.20.pdf
- Filesize: 0.82 MB
- 14 pages
In the hardcore model, certain vertices in a graph are active: the active vertices must form an independent set. We extend this to a multicoloured version: instead of simply being active or not, the active vertices are assigned a colour; active vertices of the same colour must not be adjacent. This models a scenario in which two neighbouring resources may interfere when active - eg, short-range radio communication. However, there are multiple channels (colours) available; they only interfere if both use the same channel. Other applications include routing in fibreoptic networks. We analyse Glauber dynamics. Vertices update their status at random times, at which a uniform colour is proposed: the vertex is assigned that colour if it is available; otherwise, it is set inactive. We find conditions for fast mixing of these dynamics. We also use them to model a queueing system: vertices only serve customers in their queue whilst active. The mixing estimates are applied to establish positive recurrence of the queue lengths, and bound their expectation in equilibrium.
Feedback for Dagstuhl Publishing