Being Van Kampen in Presheaf Topoi is a Uniqueness Property

Authors Harald König, Uwe Wolter



PDF
Thumbnail PDF

File

LIPIcs.CALCO.2017.16.pdf
  • Filesize: 0.67 MB
  • 15 pages

Document Identifiers

Author Details

Harald König
Uwe Wolter

Cite AsGet BibTex

Harald König and Uwe Wolter. Being Van Kampen in Presheaf Topoi is a Uniqueness Property. In 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 72, pp. 16:1-16:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.CALCO.2017.16

Abstract

Fibred semantics is the foundation of the model-instance pattern of software engineering. Software models can often be formalized as objects of presheaf topoi, e.g. the category of directed graphs. Multimodeling requires to construct colimits of diagrams of single models and their instances, while decomposition of instances of the multimodel is given by pullback. Compositionality requires an exact interplay of these operations, i.e., the diagrams must enjoy the Van Kampen property. However, checking the validity of the Van Kampen property algorithmically based on its definition is often impossible. In this paper we state a necessary and sufficient yet easily checkable condition for the Van Kampen property to hold for diagrams in presheaf topoi. It is based on a uniqueness property of path-like structures within the defining congruence classes that make up the colimiting cocone of the models. We thus add to the statement "Being Van Kampen is a Universal Property" by Heindel and Sobocinski presented at CALCO 2009 the fact that the Van Kampen property reveals a set-based structural uniqueness feature.
Keywords
  • Van Kampen Cocone
  • Presheaf Topos
  • Fibred Semantics
  • Mapping Path

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. M. Bunge and S. Lack. Van Kampen Theorems for Topoi. Advances in Mathematics, 179:291 - 317, 2003. Google Scholar
  2. Z. Diskin and U. Wolter. A Diagrammatic Logic for Object-Oriented Visual Modeling. Electr. Notes Theor. Comput. Sci., 203(6):19-41, 2008. URL: http://dx.doi.org/10.1016/j.entcs.2008.10.041.
  3. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transformations. Springer, 2006. Google Scholar
  4. Hartmut Ehrig, M. Grosse-Rhode, and U. Wolter. Applications of Category Theory to the Area of Algebraic Specification in Computer Science. Applied Categorical Structures, 6:1-35, 1998. Google Scholar
  5. Jose Luiz Fiadeiro. Categories for Software Engineering. Springer, 2005. Google Scholar
  6. Robert Goldblatt. Topoi: The Categorial Analysis of Logic. Dover Publications, 1984. Google Scholar
  7. T. Heindel and P. Sobociński. Van Kampen Colimits as Bicolimits in Span. In A. Kurz, M. Lenisa, and A. Tarlecki, editors, Algebra and Coalgebra in Computer Science, volume 5728 of Lecture Notes in Comput. Sci., pages 335-349. Springer Berlin / Heidelberg, 2009. URL: http://dx.doi.org/10.1007/978-3-642-03741-2_23.
  8. G Janelidze and W. Tholen. Facets of Descent, I. Appl. Categorical Structures, 2:245-281, 1994. URL: http://dx.doi.org/10.1007/BF00878100.
  9. Wolfram Kahl. Collagories: Relation-algebraic Reasoning for Gluing Constructions. J. Log. Algebr. Program., 80(6):297-338, 2011. URL: http://dx.doi.org/10.1016/j.jlap.2011.04.006.
  10. Wolfram Kahl. Categories of Coalgebras with Monadic Homomorphisms, pages 151-167. Springer, Berlin, Heidelberg, 2014. URL: http://dx.doi.org/10.1007/978-3-662-44124-4_9.
  11. Harald König, Michael Löwe, Christoph Schulz, and Uwe Wolter. Van Kampen Squares for Graph Transformation. In Graph Transformation - 7th International Conference, ICGT 2014, Held as Part of STAF 2014, York, UK, July 22-24, 2014. Proceedings, pages 222-236, 2014. URL: http://dx.doi.org/10.1007/978-3-319-09108-2_15.
  12. Harald König and U. Wolter. Van Kampen Colimits in Presheaf Topoi. Technical report, University of Applied Sciences, FHDW Hannover, 2016. URL: http://fhdwdev.ha.bib.de/public/papers/02016-02.pdf.
  13. S. Lack and P. Sobociński. Adhesive Categories. In Foundations of Software Science and Computation Structures (FoSSaCS '04), volume 2987, pages 273-288. Springer, 2004. URL: http://dx.doi.org/10.1007/978-3-540-24727-2_20.
  14. S. Lack and P. Sobociński. Toposes are Adhesive. Lecture Notes in Comput. Sci., 4178:184-198, 2006. URL: http://dx.doi.org/10.1007/11841883_14.
  15. Michael Löwe. Van Kampen Pushouts for Sets and Graphs. Technical report, University of Applied Sciences, FHDW Hannover, 2010. Google Scholar
  16. Saunders Mac Lane. Categories for the Working Mathematician, Second edition. Springer, 1998. Google Scholar
  17. Saunders MacLane and Ieke Moerdijk. Sheaves in Geometry and Logic. A first introduction to topos theory. Springer, 1992. Google Scholar
  18. J.P. May. A Concise Course in Algebraic Topology. Chicago Lectures in Mathematics. The University of Chicago Press, 1999. URL: http://dx.doi.org/10.1007/978-3-642-17336-3.
  19. Mehrdad Sabetzadeh, Shiva Nejati, Sotirios Liaskos, Steve M. Easterbrook, and Marsha Chechik. Consistency Checking of Conceptual Models via Model Merging. In Requirements Engineering Conference, pages 221-230, 2007. Google Scholar
  20. Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification and Formal Software Development. Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2012. URL: http://dx.doi.org/10.1007/978-3-642-17336-3.
  21. Herbert Seifert. Konstruktion dreidimensionaler geschlossener Räume. Dissertation, University of Dresden, 1931. Google Scholar
  22. P. Soboczińsky. Deriving Process Congruences from Reaction Rules. Technical Report DS-04-6, BRICS Dissertation Series, 2004. Google Scholar
  23. E. R. van Kampen. On the Connection between the Fundamental Groups of some Related Spaces. American Journal of Mathematics, 55:261 - 267, 1933. Google Scholar
  24. A. Vistoli. Grothendieck Topologies, Fibered Categories and Descent Theory. Fundamental Algebraic Geometry, Math. Surveys Monogr., Amer. Math. Soc., Providence, RI, 2005, 123:1 - 104, 2005. Google Scholar
  25. U. Wolter and Z. Diskin. From Indexed to Fibred Semantics - The Generalized Sketch File -. Reports in Informatics 361, Dep. of Informatics, University of Bergen, 2007. Google Scholar
  26. U. Wolter and H. König. Fibred Amalgamation, Descent Data, and Van Kampen Squares in Topoi. Applied Categorical Structures, 23(3):447 - 486, 2015. URL: http://dx.doi.org/10.1007/s10485-013-9339-2.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail