The Positivication of Coalgebraic Logics

Authors Fredrik Dahlqvist, Alexander Kurz

Thumbnail PDF


  • Filesize: 0.57 MB
  • 15 pages

Document Identifiers

Author Details

Fredrik Dahlqvist
Alexander Kurz

Cite AsGet BibTex

Fredrik Dahlqvist and Alexander Kurz. The Positivication of Coalgebraic Logics. In 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 72, pp. 9:1-9:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


We present positive coalgebraic logic in full generality, and show how to obtain a positive coalgebraic logic from a boolean one. On the model side this involves canonically computing a endofunctor T': Pos->Pos from an endofunctor T: Set->Set, in a procedure previously defined by the second author et alii called posetification. On the syntax side, it involves canonically computing a syntax-building functor L': DL->DL from a syntax-building functor L: BA->BA, in a dual procedure which we call positivication. These operations are interesting in their own right and we explicitly compute posetifications and positivications in the case of several modal logics. We show how the semantics of a boolean coalgebraic logic can be canonically lifted to define a semantics for its positive fragment, and that weak completeness transfers from the boolean case to the positive case.
  • Coalgebraic logic
  • coalgebras
  • enriched category theory
  • boolean algebra
  • distributive lattice
  • positive modal logic
  • monotone modal logic


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. J. Adámek, H. P. Gumm, and V. Trnková. Presentation of set functors: a coalgebraic perspective. Journal of Logic and Computation, 20(5):991-1015, 2010. Google Scholar
  2. J. Adámek, J. Rosickỳ, and E. M. Vitale. Algebraic theories: a categorical introduction to general algebra, volume 184. Cambridge University Press, 2010. Google Scholar
  3. A. Balan, A. Kurz, and J. Velebil. Positive fragments of coalgebraic logics. In International Conference on Algebra and Coalgebra in Computer Science, pages 51-65. Springer, 2013. Google Scholar
  4. M. Barr and C. Wells. Toposes, triples and theories, volume 278. Springer-Verlag, 1985. Google Scholar
  5. S. L. Bloom and J. B. Wright. P-varieties-a signature independent characterization of varieties of ordered algebras. Journal of Pure and Applied Algebra, 29(1):13-58, 1983. Google Scholar
  6. S. Celani and R. Jansana. A new semantics for positive modal logic. Notre Dame Journal of Formal Logic, 38(1), 1997. Google Scholar
  7. C. Cirstea, A. Kurz, D. Pattinson, L. Schröder, and Y. Venema. Modal logics are coalgebraic. The Computer Journal, 54(1):31-41, 2009. Google Scholar
  8. J. M. Dunn. Positive modal logic. Studia Logica, 55(2):301-317, 1995. Google Scholar
  9. M. Gehrke, H. Nagahashi, and Y. Venema. A Sahlqvist theorem for distributive modal logic. Annals of pure and applied logic, 131(1):65-102, 2005. Google Scholar
  10. H. H. Hansen. Monotonic modal logics. Technical Report PP-2003-24, ILLC, University of Amsterdam, 2003. Google Scholar
  11. H. H. Hansen and C. Kupke. A coalgebraic perspective on monotone modal logic. Electronic Notes in Theoretical Computer Science, 106:121-143, 2004. Google Scholar
  12. B. Jacobs and A. Sokolova. Exemplaric expressivity of modal logics. J. Log. and Comput., 20:1041-1068, October 2010. Google Scholar
  13. André Joyal. Foncteurs analytiques et especes de structures. Combinatoire énumérative, pages 126-159, 1986. Google Scholar
  14. K. Kapulkin, A. Kurz, and J. Velebil. Expressiveness of positive coalgebraic logic. Advances in Modal Logic, 9:368-385, 2012. Google Scholar
  15. G. M. Kelly. Structures defined by finite limits in the enriched context, i. Cahiers de topologie et géométrie différentielle catégoriques, 23(1):3-42, 1982. Google Scholar
  16. M. Kelly. Basic concepts of enriched category theory, volume 64. CUP Archive, 1982. Google Scholar
  17. C. Kupke, A. Kurz, and D. Pattinson. Algebraic semantics for coalgebraic logics. In CMCS 2004, volume 106 of ENTCS, pages 219-241, 2004. Google Scholar
  18. C. Kupke, A. Kurz, and D. Pattinson. Ultrafilter Extensions for Coalgebras. In CALCO 2005, volume 3629, pages 263-277. Springer, 2005. Google Scholar
  19. C. Kupke and D. Pattinson. Coalgebraic semantics of modal logics: an overview. TCS, 412(38):5070-5094, 2011. Special issue CMCS 2010. Google Scholar
  20. A. Kurz and D. Petrişan. Presenting functors on many-sorted varieties and applications. Information and Computation, 208(12):1421-1446, 2010. Google Scholar
  21. A. Kurz and J. Rosický. Strongly complete logics for coalgebras. Logical Methods in Computer Science, 8, 2012. Google Scholar
  22. A. Kurz and J. Velebil. Quasivarieties and varieties of ordered algebras: regularity and exactness. Mathematical Structures in Computer Science, 2016. Google Scholar
  23. L. Santocanale, Y. Venema, et al. Uniform interpolation for monotone modal logic. Advances in Modal Logic, 8:350-370, 2010. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail